The Mechanical Coupling of Fluid-Filled Granular Material Under Shear

[1]  E. Flekkøy,et al.  Sedimentation instabilities: impact of the fluid compressibility and viscosity. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  E. Aharonov,et al.  Pore pressure evolution in deforming granular material: A general formulation and the infinitely stiff approximation , 2010 .

[3]  E. Flekkøy,et al.  Size invariance of the granular Rayleigh-Taylor instability. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  D. Elsworth,et al.  Shear-induced dilatancy of fluid-saturated faults: Experiment and theory , 2009 .

[5]  E. Yeh,et al.  Microscale anatomy of the 1999 Chi‐Chi earthquake fault zone , 2009 .

[6]  A. Sagy,et al.  Geometric and rheological asperities in an exposed fault zone , 2009 .

[7]  E. Flekkøy,et al.  Decompaction and fluidization of a saturated and confined granular medium by injection of a viscous liquid or gas. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  E. Flekkøy,et al.  Coupled air/granular flow in a linear Hele-Shaw cell. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  E. Flekkøy,et al.  Experiments and simulations of a gravitational granular flow instability. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  H. Ochiai,et al.  Coupling pore-water pressure with distinct element method and steady state strengths in numerical triaxial compression tests under undrained conditions , 2007 .

[11]  M. Zeghal,et al.  A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils , 2007 .

[12]  Renaud Toussaint,et al.  Granular Rayleigh-Taylor instability: experiments and simulations. , 2007, Physical review letters.

[13]  E. Flekkøy,et al.  Pattern formation during air injection into granular materials confined in a circular Hele-Shaw cell. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Olivier Pouliquen,et al.  Flow of dense granular material: towards simple constitutive laws , 2006 .

[15]  Y. Forterre,et al.  A constitutive law for dense granular flows , 2006, Nature.

[16]  Simon M. Mudd,et al.  The mobilization of debris flows from shallow landslides , 2006 .

[17]  A. Sawicki,et al.  Developments in Modeling Liquefaction of Granular Soils, Caused by Cyclic Loads , 2006 .

[18]  R. Snieder,et al.  The liquefaction cycle and the role of drainage in liquefaction , 2004 .

[19]  Berna Unutmaz,et al.  Seismically induced landslide at Degirmendere Nose, Izmit Bay during Kocaeli (Izmit)-Turkey earthquake , 2004 .

[20]  M. Saar,et al.  Depth dependence of permeability in the Oregon cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints , 2004 .

[21]  N. Iverson,et al.  Slow episodic shear of granular materials regulated by dilatant strengthening , 2002 .

[22]  Ikuo Towhata,et al.  Assessment of liquefaction-inducing peak ground velocity and frequency of horizontal ground shaking at onset of phenomenon , 2002 .

[23]  E. Aharonov,et al.  Shear profiles and localization in simulations of granular materials. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Amos Nur,et al.  Liquefaction and dynamic poroelasticity in soft sediments , 2001 .

[25]  Herbert F. Wang Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology , 2000 .

[26]  A. Nur,et al.  Permeability as a toggle switch in fluid-controlled crustal processes , 2000 .

[27]  J. Walsh,et al.  Stratified granular media beneath large slide blocks: Implications for mode of emplacement , 2000 .

[28]  D. Brien,et al.  Acute sensitivity of landslide rates to initial soil porosity. , 2000, Science.

[29]  Juan M. Pestana-Nascimento Computational Geomechanics with Special Reference to Earthquake Engineering by O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. A. Schrefler and T. Shiomi ISBN 0471‐98285‐7; Wiley, Chichester, 1999; Price: £100.00, US $180.00 , 2000 .

[30]  McNamara,et al.  Grains and gas flow: molecular dynamics with hydrodynamic interactions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  E. Aharonov,et al.  Rigidity phase transition in granular packings. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[32]  Tadahiko Shiomi,et al.  Practical Programming in Computational Geomechanics: With Special Reference to Earthquake Engineering , 1999 .

[33]  Tim A. Osswald,et al.  Polymer Processing Fundamentals , 1998 .

[34]  P. Evesque,et al.  Sand behavior in a cavity with incompressible liquid under vertical vibrations , 1998 .

[35]  Vinod K. Garga,et al.  Volume changes in undrained triaxial tests on sands , 1997 .

[36]  J. Rice,et al.  Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault , 1995 .

[37]  Mladen Vucetic,et al.  Cyclic Threshold Shear Strains in Soils , 1994 .

[38]  D. Lockner,et al.  Dilatancy in hydraulically isolated faults and the suppression of instability , 1994 .

[39]  R. Iverson,et al.  Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium , 1993 .

[40]  James D. Byerlee,et al.  An earthquake mechanism based on rapid sealing of faults , 1992, Nature.

[41]  Chris Marone,et al.  Frictional behavior and constitutive modeling of simulated fault gouge , 1990 .

[42]  C. Scholz The Mechanics of Earthquakes and Faulting , 1990 .

[43]  R. Iverson,et al.  Dynamic Pore-Pressure Fluctuations in Rapidly Shearing Granular Materials , 1989, Science.

[44]  J. Rudnicki,et al.  Stabilization of rapid frictional slip on a weakening fault by dilatant hardening , 1988 .

[45]  Amos Nur,et al.  Porosity reduction and crustal pore pressure development , 1984 .

[46]  H. Bolton Seed,et al.  Closure of "Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes" , 1979 .

[47]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[48]  C. Scholz Velocity Anomalies in Dilatant Rock , 1978, Science.

[49]  G. Castro LIQUEFACTION AND CYCLIC MOBILITY OF SATURATED SANDS-CLOSURE , 1976 .

[50]  H. Bolton Seed,et al.  PORE-WATER PRESSURE CHANGES DURING SOIL LIQUEFACTION , 1976 .

[51]  C H Scholz,et al.  Earthquake prediction: a physical basis. , 1973, Science.

[52]  Pierre-Yves F. Robin,et al.  Note on effective pressure , 1973 .

[53]  T. Leslie Youd,et al.  Compaction of Sands by Repeated Shear Straining , 1972 .

[54]  Amos Nur,et al.  An exact effective stress law for elastic deformation of rock with fluids , 1971 .

[55]  P. L. Bransby,et al.  Sand Liquefaction in Triaxial and Simple Shear Tests , 1971 .

[56]  H. Bolton Seed,et al.  Sand Liquefaction Under Cyclic Loading Simple Shear Conditions , 1968 .

[57]  K. Terzaghi Theoretical Soil Mechanics , 1943 .

[58]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[59]  O. Pouliquen,et al.  Abstract Submitted for the DFD10 Meeting of The American Physical Society Granular collapse in a fluid: Role of the initial volume fraction , 2012 .

[60]  A. Sagy,et al.  Geometric and Rheological Asperities 1 in an Exposed Fault Zone 2 , 2008 .

[61]  I. Towhata Geotechnical Earthquake Engineering , 2008 .

[62]  Steven R. Pride,et al.  Relationships between Seismic and Hydrological Properties , 2005 .

[63]  Kenichi Soga,et al.  SOIL LIQUEFACTION EFFECTS OBSERVED IN THE KOBE EARTHQUAKE OF 1995. , 1998 .

[64]  D. Wolf,et al.  Force Schemes in Simulations of Granular Materials , 1996 .

[65]  J. Couderc,et al.  Incipient fluidization and particulate systems , 1985 .

[66]  Fusayoshi Kawakami,et al.  Damage to the Ground and Earth Structures by the Niigata Earthquake of June 16, 1964 , 1966 .

[67]  Ronald F. Scott,et al.  Principles of soil mechanics , 1963 .