Fast deflagration to detonation transition of energetic material based on a quasi-core/shell structured nanothermite composite

[1]  Hui Huang,et al.  Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity. , 2014, Ultrasonics sonochemistry.

[2]  S. Bhattacharya,et al.  High-performance nanothermite composites based on aloe-vera-directed CuO nanorods. , 2013, ACS applied materials & interfaces.

[3]  Rui Li,et al.  Preparation and Characterization of Insensitive HMX/Graphene Oxide Composites , 2013 .

[4]  Yun Lu,et al.  Fe3O4@C@polyaniline trilaminar core-shell composite microspheres as separable adsorbent for organic dye , 2013 .

[5]  Kezheng Chen,et al.  Double template assisting synthesized core–shell structured titania/polyaniline nanocomposite and its smart electrorheological response , 2013 .

[6]  M. Zachariah,et al.  Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications. , 2013, ACS applied materials & interfaces.

[7]  M. Zachariah,et al.  Super-reactive nanoenergetic gas generators based on periodate salts. , 2013, Angewandte Chemie.

[8]  Xiaoping Zhou,et al.  Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability. , 2013, ACS applied materials & interfaces.

[9]  Xun Wang,et al.  Nanowire Membrane-based Nanothermite: towards Processable and Tunable Interfacial Diffusion for Solid State Reactions , 2013, Scientific Reports.

[10]  Youyi Xia,et al.  Natural silk fibroin/polyaniline (core/shell) coaxial fiber: Fabrication and application for cell proliferation , 2013 .

[11]  M. Zachariah,et al.  Facile Aerosol Route to Hollow CuO Spheres and its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators , 2013 .

[12]  M. Zachariah,et al.  Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? , 2013 .

[13]  Jason A. Thomas,et al.  Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. , 2013, ACS applied materials & interfaces.

[14]  M. Zachariah,et al.  Electrospun nanofiber-based thermite textiles and their reactive properties. , 2012, ACS applied materials & interfaces.

[15]  Jianxin Zhu,et al.  Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method. , 2012, Journal of hazardous materials.

[16]  Carole Rossi,et al.  High‐Energy Al/CuO Nanocomposites Obtained by DNA‐Directed Assembly , 2012 .

[17]  M. Zachariah,et al.  Encapsulation of Perchlorate Salts within Metal Oxides for Application as Nanoenergetic Oxidizers , 2012 .

[18]  Christopher J. Morris,et al.  Silicon-based bridge wire micro-chip initiators for bismuth oxide–aluminum nanothermite , 2011 .

[19]  S. Gangopadhyay,et al.  Combustion characteristics of novel hybrid nanoenergetic formulations , 2011 .

[20]  M. Göbel,et al.  Nitrotetrazolate-2N-oxides and the strategy of N-oxide introduction. , 2010, Journal of the American Chemical Society.

[21]  Xiaoqing Zeng,et al.  Synthesis and characterization of carbonyl diazide, OC(N3)2. , 2010, Inorganic chemistry.

[22]  Zhen Chen,et al.  An equation of state for the detonation product of copper oxide/aluminum nanothermite composites , 2010 .

[23]  D. Luss,et al.  Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use , 2009, Nanotechnology.

[24]  B. Twamley,et al.  Energetic nitrogen-rich Cu(II) and Cd(II) 5,5'-azobis(tetrazolate) complexes. , 2009, Inorganic chemistry.

[25]  L. Eriksson,et al.  Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Mengjun Chen,et al.  Detoxification of cathode ray tube glass by self-propagating process. , 2009, Journal of hazardous materials.

[27]  E. Dreizin,et al.  Metal-based reactive nanomaterials , 2009 .

[28]  M. B. Talawar,et al.  Environmentally compatible next generation green energetic materials (GEMs). , 2009, Journal of hazardous materials.

[29]  T. Klapötke,et al.  The CN7(-) anion. , 2009, Journal of the American Chemical Society.

[30]  Richard A. Yetter,et al.  Metal particle combustion and nanotechnology , 2009 .

[31]  R. Yetter,et al.  Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite , 2009 .

[32]  Kaili Zhang,et al.  Nanoenergetic Materials for MEMS: A Review , 2007, Journal of Microelectromechanical Systems.

[33]  A. Burnham,et al.  Properties of CP: Coefficient of Thermal Expansion, Decomposition Kinetics, Reaction to Spark, Friction and Impact , 2006 .

[34]  J. Weigand,et al.  Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts. , 2005, Inorganic chemistry.

[35]  M. B. Talawar,et al.  Energetic co-ordination compounds: synthesis, characterization and thermolysis studies on bis-(5-nitro-2H-tetrazolato-N2)tetraammine cobalt(III) perchlorate (BNCP) and its new transition metal (Ni/Cu/Zn) perchlorate analogues. , 2005, Journal of hazardous materials.

[36]  M. Pantoya,et al.  Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites , 2005 .

[37]  M. Zachariah,et al.  Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly , 2004 .

[38]  J. Giles Green explosives: Collateral damage , 2004, Nature.

[39]  R. Simpson,et al.  Nanostructured energetic materials using sol-gel methodologies , 2001 .