Phase transformations during sintering of titania nanoparticles.

The size below which anatase nanoparticles become more stable than rutile nanoparticles (crossover diameter) is dependent on the environment of the nanoparticles. It is smaller for nanoparticles in vacuum than those in water and continues to decrease with increase in temperature. Phase transformation between anatase and rutile phases is facilitated by enhanced ionic mobility at temperatures near the melting point of the nanoparticles. Multiparticle multiphase molecular dynamics simulations of TiO(2) nanoparticles undergoing sintering-induced phase transformations are reported here. Over the time scales accessible to molecular dynamics simulations, we found that the final sintering agglomerate transformed to the rutile phase, provided one of the sintering nanoparticles was rutile, while sintering of anatase and amorphous nanoparticles resulted in a brookite agglomerate. No such phase transformations were observed at temperatures away from nanoparticle's melting temperatures.

[1]  K. Warrier,et al.  Anatase to rutile transformation in sol-gel titania by modification of precursor , 1998 .

[2]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[3]  M. Morris,et al.  The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2 , 2006 .

[4]  H. Jung,et al.  Influence of Anatase-Rutile Phase Transformation on Dielectric Properties of Sol-Gel Derived TiO2 Thin Films , 2005 .

[5]  Jae-pyoung Ahn,et al.  Effect of compact density on phase transition kinetics from anatase phase to rutile phase during sintering of ultrafine titania powder compacts , 1998 .

[6]  E. Stathatos,et al.  Effect of surfactant in a modified sol on the physicochemical properties and photocatalytic activity of crystalline TiO2 nanoparticles , 2007 .

[7]  N. Machado,et al.  Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25 , 2005 .

[8]  Tatsuya Okubo,et al.  Densification of nanostructured titania assisted by a phase transformation , 1992, Nature.

[9]  P. Praserthdam,et al.  Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO(2) in selective acetylene hydrogenation. , 2006, The journal of physical chemistry. B.

[10]  Katsuki Kusakabe,et al.  Growth and transformation of TiO2 crystallites in aerosol reactor , 1991 .

[11]  P. Gouma,et al.  ANATASE-TO-RUTILE TRANSFORMATION IN TITANIA POWDERS , 2001 .

[12]  Yi Hu,et al.  Phase transformation of precipitated TiO2 nanoparticles , 2003 .

[13]  P. Cummings,et al.  Molecular Dynamics Study of Water Adsorption on TiO2 Nanoparticles , 2007 .

[14]  William W. Yu,et al.  Photodegradation of Congo Red catalyzed by nanosized TiO2 , 2005 .

[15]  Y. Hu,et al.  Effect of brookite phase on the anatase–rutile transition in titania nanoparticles , 2003 .

[16]  A. Navrotsky,et al.  Energetics of nanocrystalline TiO2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Amatzya Y. Meyer,et al.  Molecular mechanics and molecular shape: Part VI. The response of simple molecules to bimolecular association , 1988 .

[18]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[19]  A. Y. Meyer Molecular mechanics and molecular shape. V. on the computation of the bare surface area of molecules , 1988 .

[20]  N. Murafa,et al.  Transformation of brookite-type TiO2 nanocrystals to rutile: correlation between microstructure and photoactivity , 2006 .

[21]  J. Banfield,et al.  Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[22]  F. Mizukami,et al.  Microstructure and phase transformation behavior of doped nanostructured titania , 1999 .

[23]  Peter T. Cummings,et al.  Sintering of titanium dioxide nanoparticles: a comparison between molecular dynamics and phenomenological modeling , 2008 .

[24]  Q. Jiang,et al.  Phase Stability of Nanoanatase , 2003 .

[25]  Masanori Matsui,et al.  Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2 , 1991 .

[26]  C. Morterra,et al.  Structural and morphological modifications of sintering microcrystalline TiO2: an XRD, HRTEM and FTIR study , 1993 .

[27]  L. Curtiss,et al.  Modeling the Morphology and Phase Stability of TiO2 Nanocrystals in Water. , 2005, Journal of chemical theory and computation.

[28]  S. A. Borkar,et al.  Temperatures and kinetics of anatase to rutile transformation in doped TiO2 heated in microwave field , 2004 .

[29]  P. Cummings,et al.  Molecular dynamics simulation of titanium dioxide nanoparticle sintering. , 2005, The journal of physical chemistry. B.

[30]  A. Y. Meyer Molecular mechanics and molecular shape: Part VII. Structural factors in the estimation of solvation energies , 1985 .

[31]  A. Barnard,et al.  Effects of Particle Morphology and Surface Hydrogenation on the Phase Stability of TiO2 at the Nanoscale , 2004 .

[32]  William Smith,et al.  CCP5: a collaborative computational project for the computer simulation of condensed phases , 1987 .

[33]  K. Kumar Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites , 1995 .

[34]  H. Jang,et al.  The Effects of Temperature on Particle Size in the Gas-Phase Production of TiO2 , 1995 .