Multi-localization transport behaviour in bulk thermoelectric materials

Simultaneously optimizing electrical and thermal transport properties of bulk thermoelectric materials remains a key challenge due to the conflicting combination of material traits. Here, we have explored the electrical and thermal transport features of In-filled CoSb3 through X-ray absorption fine structure, X-ray photoemission spectra, transport measurement and theoretical calculation. The results provide evidence of three types of coexisting multi-localization transport behaviours in the material; these are heat-carrying phonon-localized resonant scattering, accelerated electron movement and increase in density of states near the Fermi level. The 5p-orbital hybridization between In and Sb is discovered in the In-filled CoSb3 compound, which results in a charge transfer from Sb to In and the enhancement of p–d orbital hybridization between Co and Sb. Our work demonstrates that the electrical and thermal properties of filled skutterudite bulk thermoelectric materials can be simultaneously optimized through the three types of coexisting multi-localization transport behaviours in an independent way.

[1]  Terry M. Tritt,et al.  Recent trends in thermoelectric materials research , 2001 .

[2]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[3]  S. Rouvimov,et al.  Rattler-seeded InSb nanoinclusions from metastable indium-filled In0.1Co4Sb12 skutterudites for high-performance thermoelectrics , 2012 .

[4]  Qingjie Zhang,et al.  Nanostructured bulk YbxCo4Sb12 with high thermoelectric performance prepared by the rapid solidification method , 2009 .

[5]  Jun Zhou,et al.  Optimal bandwidth for high efficiency thermoelectrics. , 2011, Physical review letters.

[6]  S. Yamanaka,et al.  Enhancement of thermoelectric properties of CoSb3-based skutterudites by double filling of Tl and In , 2012 .

[7]  Jian He,et al.  High temperature thermoelectric properties of double-filled InxYbyCo4Sb12 skutterudites , 2009 .

[8]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[9]  Jihui Yang,et al.  Alkali-metal-filled Co Sb 3 skutterudites as thermoelectric materials: Theoretical study , 2008 .

[10]  David J. Singh,et al.  Giant anharmonic phonon scattering in PbTe. , 2011, Nature materials.

[11]  K. Cai,et al.  Thermoelectric properties of indium-filled skutterudites prepared by combining solvothermal synthesis and melting , 2009 .

[12]  Jihui Yang,et al.  Improving thermoelectric performance of caged compounds through light-element filling , 2009 .

[13]  S. Mahanti,et al.  Ab initio study of deep defect states in narrow band-gap semiconductors: group III impurities in PbTe. , 2006, Physical review letters.

[14]  F. Grandjean,et al.  Einstein oscillators in thallium filled antimony skutterudites. , 2003, Physical review letters.

[15]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[16]  Qingjie Zhang,et al.  Effect of In Impurity on Thermoelectric Properties of Ba and In Double-Filled n-Type Skutterudite Materials , 2012, Journal of Electronic Materials.

[17]  C. Uher,et al.  CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .

[18]  Ronggui Yang,et al.  Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. , 2010, Nature materials.

[19]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[20]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[21]  B. Sales,et al.  Thermoelectric properties of thallium-filled skutterudites , 2000 .

[22]  C. Uher,et al.  Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 , 2001 .

[23]  Brian C. Sales,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. , 1996 .

[24]  George S. Nolas,et al.  Effect of partial void filling on the lattice thermal conductivity of skutterudites , 1998 .

[25]  D. Rowe,et al.  Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites , 2003 .

[26]  陈立东,et al.  Charge-Compensated Compound Defects in Ga-containing Thermoelectric Skutterudites , 2013 .

[27]  G. J. Snyder,et al.  Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites , 2014 .

[28]  George S. Nolas,et al.  High figure of merit in partially filled ytterbium skutterudite materials , 2000 .

[29]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[30]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[31]  Jian Yu,et al.  Enhanced thermoelectric performance via randomly arranged nanopores: Excellent transport properties of YbZn2Sb2 nanoporous materials , 2012 .

[32]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[33]  E. Bauer,et al.  InyCo4Sb12 Skutterudite: Phase Equilibria and Crystal Structure , 2013, Journal of Electronic Materials.

[34]  张文清 Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo(4)Sb(12) double-filled skutterudites , 2008 .

[35]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[36]  P. Zhai,et al.  Synthesis and high temperature transport properties of barium and indium double-filled skutterudites BaxInyCo4Sb12−z , 2007 .

[37]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[38]  Shiqiang Wei,et al.  Interface effect of InSb quantum dots embedded in SiO2 matrix , 2005 .

[39]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[40]  Qingjie Zhang,et al.  Excellent performance stability of Ba and In double-filled skutterudite thermoelectric materials , 2011 .

[41]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[42]  Chunlei Dong,et al.  Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. , 2009, Journal of the American Chemical Society.

[43]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[44]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[45]  J. Grossman,et al.  Enhancing the thermoelectric power factor with highly mismatched isoelectronic doping. , 2010, Physical Review Letters.

[46]  Tao He,et al.  Thermoelectric Properties of Indium-Filled Skutterudites. , 2006 .

[47]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[48]  L. D. Chen,et al.  Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12 , 2006 .

[49]  G. Nolas,et al.  Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials , 2005 .

[50]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[51]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[52]  Jiong Yang,et al.  Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12 , 2009 .

[53]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[54]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.