Solar physics in the 2020s: DKIST, parker solar probe, and solar orbiter as a multi-messenger constellation

The National Science Foundation (NSF) Daniel K. Inouye Solar Telescope (DKIST) is about to start operations at the summit of Haleakala (Hawaii). DKIST will join the early science phases of the NASA and ESA Parker Solar Probe and Solar Orbiter encounter missions. By combining in-situ measurements of the near-sun plasma environment and detail remote observations of multiple layers of the Sun, the three observatories form an unprecedented multi-messenger constellation to study the magnetic connectivity inside the solar system. This white paper outlines the synergistic science that this multi-messenger suite enables.

[1]  C. Russell,et al.  The Solar Orbiter magnetometer , 2020, Astronomy & Astrophysics.

[2]  P. Astier,et al.  The Solar Orbiter Radio and Plasma Waves (RPW) instrument , 2020, Astronomy & Astrophysics.

[3]  C. Beck,et al.  Magnetic Structure of an Erupting Filament , 2020, The Astrophysical Journal.

[4]  Philippe Louarn,et al.  Models and data analysis tools for the Solar Orbiter mission , 2019, Astronomy & Astrophysics.

[5]  Giampiero Naletto,et al.  Metis: the Solar Orbiter visible light and ultraviolet coronal imager , 2019, Astronomy & Astrophysics.

[6]  S. Guest,et al.  The Solar Orbiter SPICE instrument , 2019, 1909.01183.

[7]  J. C. del Toro Iniesta,et al.  The Polarimetric and Helioseismic Imager on Solar Orbiter , 2019, Astronomy & Astrophysics.

[8]  A. Spencer,et al.  The Solar Orbiter EUI instrument: The Extreme Ultraviolet Imager , 2020, Astronomy & Astrophysics.

[9]  J. Kasper,et al.  Helium Variation across Two Solar Cycles Reveals a Speed-dependent Phase Lag , 2019, The Astrophysical Journal.

[10]  N. Raouafi,et al.  Element Abundances: A New Diagnostic for the Solar Wind , 2019, The Astrophysical journal.

[11]  J. Linker,et al.  Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe's First Perihelion Pass , 2019, The Astrophysical Journal.

[12]  J. Kasper,et al.  Predictions for the First Parker Solar Probe Encounter , 2019, The Astrophysical Journal.

[13]  S. Cranmer,et al.  The Properties of the Solar Corona and Its Connection to the Solar Wind , 2018, Annual Review of Astronomy and Astrophysics.

[14]  F. Hill The Global Oscillation Network Group Facility—An Example of Research to Operations in Space Weather , 2018, Space Weather.

[15]  B. Li,et al.  Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun , 2018, 1805.02880.

[16]  D. Kaplan,et al.  Low Altitude Solar Magnetic Reconnection, Type III Solar Radio Bursts, and X-ray Emissions , 2018, Scientific Reports.

[17]  N. Gopalswamy,et al.  Coronal flux ropes and their interplanetary counterparts , 2017, Journal of Atmospheric and Solar-Terrestrial Physics.

[18]  S. Cranmer,et al.  Characterizing the Motion of Solar Magnetic Bright Points at High Resolution , 2017, 1710.04738.

[19]  Jason A. Gilbert,et al.  On the Relation between the In Situ Properties and the Coronal Sources of the Solar Wind , 2017 .

[20]  P. Riley,et al.  Origins of the Ambient Solar Wind: Implications for Space Weather , 2017, Space Science Reviews.

[21]  E. DeLuca,et al.  Solar Coronal Lines in the Visible and Infrared: A Rough Guide , 2017, 1708.03626.

[22]  M. Owens,et al.  The Open Flux Problem , 2017, 1708.02342.

[23]  M. Lockwood,et al.  The Solar Probe Plus Mission: Humanity’s First Visit to Our Star , 2016 .

[24]  Edmond C. Roelof,et al.  Integrated Science Investigation of the Sun (ISIS): Design of the Energetic Particle Investigation , 2016 .

[25]  M. L. Mays,et al.  Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions , 2016 .

[26]  B. Li,et al.  Slow Solar Wind: Observations and Modeling , 2016 .

[27]  S. Fineschi,et al.  Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines , 2016, Front. Astron. Space Sci..

[28]  J. Kuhn,et al.  Infrared Dual-Line Hanle Diagnostic of the Coronal Vector Magnetic Field , 2016, Front. Astron. Space Sci..

[29]  D. Werthimer,et al.  The FIELDS Instrument Suite for Solar Probe Plus , 2016, Space Science Reviews.

[30]  John W. Belcher,et al.  Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus , 2015 .

[31]  B. Pontieu,et al.  NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING , 2015, 1508.07234.

[32]  Noé Lugaz,et al.  Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury , 2015 .

[33]  S. Imada,et al.  PHOTOSPHERIC ABUNDANCES OF POLAR JETS ON THE SUN OBSERVED BY HINODE , 2015, 1507.04075.

[34]  J. Slavin,et al.  RADIAL EVOLUTION OF A MAGNETIC CLOUD: MESSENGER, STEREO, AND VENUS EXPRESS OBSERVATIONS , 2015 .

[35]  J. Laming The FIP and Inverse FIP Effects in Solar and Stellar Coronae , 2015, 1504.08325.

[36]  J. Sauvaud,et al.  Statistical study of magnetic cloud erosion by magnetic reconnection , 2015 .

[37]  Jens Rodmann,et al.  The Wide-Field Imager for Solar Probe Plus (WISPR) , 2014 .

[38]  S. Lepri,et al.  TEMPORAL EVOLUTION OF SOLAR WIND ION COMPOSITION AND THEIR SOURCE CORONAL HOLES DURING THE DECLINING PHASE OF CYCLE 23. I. LOW-LATITUDE EXTENSION OF POLAR CORONAL HOLES , 2014 .

[39]  T. Gombosi,et al.  Alfvén Wave Turbulence as a Coronal Heating Mechanism: Simultaneously Predicting the Heating Rate and the Wave-induced Emission Line Broadening , 2014, 1401.0565.

[40]  N. Lugaz,et al.  Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection , 2014 .

[41]  P. Judge,et al.  From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields , 2013, 1304.3863.

[42]  S. Solanki,et al.  Structure and dynamics of isolated internetwork Ca II H bright points observed by SUNRISE , 2012, 1211.4836.

[43]  S. Basu,et al.  COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES , 2012 .

[44]  N. Schwadron,et al.  EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE , 2012 .

[45]  H. Warren,et al.  ESTABLISHING A CONNECTION BETWEEN ACTIVE REGION OUTFLOWS AND THE SOLAR WIND: ABUNDANCE MEASUREMENTS WITH EIS/HINODE , 2010, 1009.4291.

[46]  D. Müller,et al.  Solar Orbiter , 2012, Solar Physics.

[47]  J. Kuhn,et al.  PROPERTIES OF THE DIFFUSE NEUTRAL HELIUM IN THE INNER HELIOSPHERE , 2010 .

[48]  M. Shimojo,et al.  THE RELATION BETWEEN MAGNETIC FIELDS AND CORONAL ACTIVITIES IN THE POLAR CORONAL HOLE , 2009 .

[49]  T. Onsager,et al.  If the Sun is so quiet, why is the Earth ringing? A comparison of two solar minimum intervals , 2009 .

[50]  S. Krucker,et al.  Coronal Hard X-Ray Emission Associated with Radio Type III Bursts , 2008 .

[51]  D. Baker,et al.  Outflows at the Edges of Active Regions: Contribution to Solar Wind Formation? , 2008 .

[52]  R. Casini,et al.  An Instrument to Measure Coronal Emission Line Polarization , 2008 .

[53]  B. Pontieu,et al.  Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind , 2007, Science.

[54]  J. Steinberg,et al.  Solar Wind Helium Abundance as a Function of Speed and Heliographic Latitude: Variation through a Solar Cycle , 2007 .

[55]  James A. Klimchuk,et al.  On Solving the Coronal Heating Problem , 2006 .

[56]  S. Cranmer,et al.  On the Generation, Propagation, and Reflection of Alfvén Waves from the Solar Photosphere to the Distant Heliosphere , 2004, astro-ph/0410639.

[57]  D. D. Zeeuw,et al.  Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation , 2004 .

[58]  J. Gosling,et al.  Reducing heliospheric magnetic flux from coronal mass ejections without disconnection , 2002 .

[59]  N. Schwadron,et al.  The Behavior of the Open Magnetic Field of the Sun , 2001 .

[60]  V. Bothmer,et al.  Signatures of fast CMEs in interplanetary space , 1996 .

[61]  J. Geiss,et al.  Origin of the solar wind from composition data , 1995 .