Ribbons, vesicles, and baskets: supramolecular assembly of a coil-plate-coil emeraldicene derivative.

Concentration matters: the self-assembly of title compound 1 evolves from well-defined ribbons to vesicles to baskets, upon simply decreasing the concentration of 1 in tetrahydrofuran. Electron microscopy revealed a unique self-assembled structure: baskets are formed by curved and self-wrapped nanometer-thin ribbons. The self-assembly of π-conjugated molecule 1 enables to construct nano/micro structures with desired optoelectronic properties.

[1]  Sukumaran Santhosh Babu,et al.  Selbstorganisierte Gelbildner für die organische Elektronik , 2012 .

[2]  Ayyappanpillai Ajayaghosh,et al.  Self-assembled gelators for organic electronics. , 2012, Angewandte Chemie.

[3]  Wei Han,et al.  Von “Kaffeeringen” lernen: geordnete Strukturen durch Selbstorganisation bei kontrollierter Verdunstung , 2012 .

[4]  Zhiqun Lin,et al.  Learning from "coffee rings": ordered structures enabled by controlled evaporative self-assembly. , 2012, Angewandte Chemie.

[5]  A. Mohebbi,et al.  Emeraldicene as an Acceptor Moiety: Balanced‐Mobility, Ambipolar, Organic Thin‐Film Transistors , 2011, Advanced materials.

[6]  A. Mohebbi,et al.  Electron-accepting dithiarubicene (emeraldicene) and derivatives prepared by unprecedented nucleophilic hydrogen substitution by alkyllithium reagents. , 2011, Chemistry.

[7]  Ho-Joong Kim,et al.  Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. , 2011, Accounts of chemical research.

[8]  S. Mannsfeld,et al.  Organic single-crystalline p-n junction nanoribbons. , 2010, Journal of the American Chemical Society.

[9]  A. Ajayaghosh,et al.  Rational design of nanofibers and nanorings through complementary hydrogen-bonding interactions of functional pi systems. , 2010, Chemistry.

[10]  Z. Yin,et al.  Postchemistry of organic particles: when TTF microparticles meet TCNQ microstructures in aqueous solution. , 2010, Journal of the American Chemical Society.

[11]  I. Manners,et al.  Nanofiber micelles from the self-assembly of block copolymers. , 2010, Trends in biotechnology.

[12]  R. Segalman,et al.  Block Copolymers for Organic Optoelectronics , 2009 .

[13]  Meizhen Yin,et al.  Functionalization of self-assembled hexa-peri-hexabenzocoronene fibers with peptides for bioprobing. , 2009, Journal of the American Chemical Society.

[14]  K. Müllen,et al.  Self‐Assembly of a Donor‐Acceptor Dyad Across Multiple Length Scales: Functional Architectures for Organic Electronics , 2009 .

[15]  A. Ajayaghosh,et al.  Solvent-directed self-assembly of pi gelators to hierarchical macroporous structures and aligned fiber bundles. , 2009, Chemistry, an Asian journal.

[16]  Eunji Lee,et al.  Reversible scrolling of two-dimensional sheets from the self-assembly of laterally grafted amphiphilic rods. , 2009, Angewandte Chemie.

[17]  A. Ajayaghosh,et al.  Reversible transformation between rings and coils in a dynamic hydrogen-bonded self-assembly. , 2009, Journal of the American Chemical Society.

[18]  Yunqi Liu,et al.  Single‐Crystal Microribbons of an Indolo[3,2‐b]carbazole Derivative by Solution‐Phase Self‐Assembly with Novel Mechanical, Electrical, and Optical Properties , 2008 .

[19]  Lei Jiang,et al.  Optical waveguide based on crystalline organic microtubes and microrods. , 2008, Angewandte Chemie.

[20]  F. D. De Schryver,et al.  Guiding the self-assembly of a second-generation polyphenylene dendrimer into well-defined patterns. , 2008, Small.

[21]  A. Ajayaghosh,et al.  Toroidal nanoobjects from Rosette assemblies of melamine-linked oligo(p-phenyleneethynylene)s and cyanurates. , 2008, Angewandte Chemie.

[22]  Aidong Peng,et al.  Nanowire Waveguides and Ultraviolet Lasers Based on Small Organic Molecules , 2008 .

[23]  S. Mannsfeld,et al.  Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. , 2007, Nano letters.

[24]  G. Cui,et al.  Self-assembly of positively charged discotic PAHs: from nanofibers to nanotubes. , 2007, Angewandte Chemie.

[25]  A. Ajayaghosh,et al.  Pi-organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions. , 2007, Accounts of chemical research.

[26]  Younan Xia,et al.  Fabrication of field-effect transistors from hexathiapentacene single-crystal nanowires. , 2007, Nano letters.

[27]  Shaoliang Lin,et al.  Brownian Molecular Dynamics Simulation on Self-Assembly Behavior of Rod−Coil Diblock Copolymers , 2007 .

[28]  W. Dehaen,et al.  Supramolecular Nanofibers by Self‐Organization of Bola‐amphiphiles through a Combination of Hydrogen Bonding and π–π Stacking Interactions , 2007 .

[29]  T. Fukushima,et al.  Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers , 2006, Science.

[30]  Eunji Lee,et al.  Nanofibers with tunable stiffness from self-assembly of an amphiphilic wedge-coil molecule. , 2006, Angewandte Chemie.

[31]  Reji Varghese,et al.  Evolution of nano- to microsized spherical assemblies of a short oligo(p-phenyleneethynylene) into superstructured organogels. , 2006, Angewandte Chemie.

[32]  Christopher D. Simpson,et al.  Self-organized nanofibers from a giant nanographene: effect of solvent and deposition method , 2006 .

[33]  K. Müllen,et al.  Supramolecular Organization in Fluorene/Indenofluorene– Oligothiophene Alternating Conjugated Copolymers , 2005 .

[34]  W. Dehaen,et al.  The introduction of pi-pi stacking moieties for fabricating stable micellar structure: formation and dynamics of disklike micelles. , 2005, Angewandte Chemie.

[35]  Jong-Hyun Ahn,et al.  Supramolecular barrels from amphiphilic rigid–flexible macrocycles , 2005, Nature materials.

[36]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[37]  Samuel I Stupp,et al.  Synthesis, self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules. , 2004, Journal of the American Chemical Society.

[38]  D. Pochan,et al.  Toroidal Triblock Copolymer Assemblies , 2004, Science.

[39]  E. W. Meijer,et al.  Coiled-coil gel nanostructures of oligo(p-phenylenevinylene)s: gelation-induced helix transition in a higher-order supramolecular self-assembly of a rigid pi-conjugated system. , 2004, Angewandte Chemie.

[40]  T. Fukushima,et al.  Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube , 2004, Science.

[41]  Luping Yu,et al.  Supramolecular self-assembly of conjugated diblock copolymers. , 2004, Chemistry.

[42]  K. Müllen,et al.  Hexakis(4-iodophenyl)-peri-hexabenzocoronene- a versatile building block for highly ordered discotic liquid crystalline materials. , 2004, Journal of the American Chemical Society.

[43]  C. Chan,et al.  Supramolecular assembly of poly(phenylene vinylene) with crown ether substituents to form nanoribbons. , 2003, Journal of the American Chemical Society.

[44]  D. Qiu,et al.  Stabilizing bolaform amphiphile interfacial assemblies by introducing mesogenic groups. , 2003, Chemistry.

[45]  Tomasz Kowalewski,et al.  Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: nanowire morphologies in new di- and triblock copolymers. , 2002, Angewandte Chemie.

[46]  W. Zin,et al.  Supramolecular structures from rod-coil block copolymers. , 2001, Chemical reviews.

[47]  S. Stupp,et al.  Self-assembly of dendron rodcoil molecules into nanoribbons. , 2001, Journal of the American Chemical Society.

[48]  G. Hadziioannou,et al.  Semiconducting Diblock Copolymers Synthesized by Means of Controlled Radical Polymerization Techniques , 2000 .

[49]  W. Dehaen,et al.  An Improved Synthesis of Substituted Rubicenes Providing Access to Heterocyclic Rubicene Analogues , 1999 .

[50]  F. Bates,et al.  Giant wormlike rubber micelles , 1999, Science.

[51]  S. Jenekhe,et al.  Self-assembly of ordered microporous materials from rod-coil block copolymers , 1999, Science.

[52]  S. Jenekhe,et al.  Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes , 1998, Science.

[53]  J. Spatz,et al.  A polystyrene-oligothiophene-polystyrene triblock copolymer , 1998 .

[54]  K. Müllen,et al.  Rapid Charge Transport Along Self‐Assembling Graphitic Nanowires , 1998 .

[55]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[56]  S. Stupp,et al.  Supramolecular Materials: Self-Organized Nanostructures , 1997, Science.

[57]  C. Brinker,et al.  Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas , 1996 .

[58]  Lifeng Zhang,et al.  Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers , 1995, Science.

[59]  Bernard François,et al.  Self-organized honeycomb morphology of star-polymer polystyrene films , 1994, Nature.

[60]  Jonathan V Selinger,et al.  Diacetylenic Lipid Tubules: Experimental Evidence for a Chiral Molecular Architecture , 1994, Science.

[61]  G. Fredrickson,et al.  Cylindrical micelles in rigid-flexible diblock copolymers , 1992 .

[62]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.