A Direct Formulation for Sparse Pca Using Semidefinite Programming

We examine the problem of approximating, in the Frobenius-norm sense, a positive, semidefinite symmetric matrix by a rank-one matrix, with an upper bound on the cardinality of its eigenvector. The problem arises in the decomposition of a covariance matrix into sparse factors, and has wide applications ranging from biology to finance. We use a modification of the classical variational representation of the largest eigenvalue of a symmetric matrix, where cardinality is constrained, and derive a semidefinite programming based relaxation for our problem.

[1]  J. N. R. Jeffers,et al.  Two Case Studies in the Application of Principal Component Analysis , 1967 .

[2]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[3]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[4]  Jorge Cadima Departamento de Matematica Loading and correlations in the interpretation of principle compenents , 1995 .

[5]  I. Jolliffe Rotation of principal components: choice of normalization constraints , 1995 .

[6]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[7]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[8]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[9]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[10]  Claude Lemaréchal,et al.  Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..

[11]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[12]  C. Lemaréchal,et al.  Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .

[13]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[14]  S. Vines Simple principal components , 2000 .

[15]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[16]  Tamara G. Kolda,et al.  Algorithm 805: computation and uses of the semidiscrete matrix decomposition , 2000, TOMS.

[17]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[18]  Hongyuan Zha,et al.  Low-Rank Approximations with Sparse Factors I: Basic Algorithms and Error Analysis , 2001, SIAM J. Matrix Anal. Appl..

[19]  I. Jolliffe,et al.  A Modified Principal Component Technique Based on the LASSO , 2003 .

[20]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[21]  Hongyuan Zha,et al.  Low-Rank Approximations with Sparse Factors II: Penalized Methods with Discrete Newton-Like Iterations , 2004, SIAM J. Matrix Anal. Appl..

[22]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[23]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[24]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[25]  A. d'Aspremont,et al.  Smooth Optimization for Sparse Semidefinite Programs , 2005 .

[26]  Arkadi Nemirovski,et al.  Non-euclidean restricted memory level method for large-scale convex optimization , 2005, Math. Program..

[27]  D. Donoho,et al.  Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.