A Direct Formulation for Sparse Pca Using Semidefinite Programming
暂无分享,去创建一个
[1] J. N. R. Jeffers,et al. Two Case Studies in the Application of Principal Component Analysis , 1967 .
[2] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[3] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[4] Jorge Cadima Departamento de Matematica. Loading and correlations in the interpretation of principle compenents , 1995 .
[5] I. Jolliffe. Rotation of principal components: choice of normalization constraints , 1995 .
[6] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[7] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[8] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[9] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[10] Claude Lemaréchal,et al. Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..
[11] Roger B. Sidje,et al. Expokit: a software package for computing matrix exponentials , 1998, TOMS.
[12] C. Lemaréchal,et al. Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .
[13] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[14] S. Vines. Simple principal components , 2000 .
[15] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[16] Tamara G. Kolda,et al. Algorithm 805: computation and uses of the semidiscrete matrix decomposition , 2000, TOMS.
[17] Stephen P. Boyd,et al. A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).
[18] Hongyuan Zha,et al. Low-Rank Approximations with Sparse Factors I: Basic Algorithms and Error Analysis , 2001, SIAM J. Matrix Anal. Appl..
[19] I. Jolliffe,et al. A Modified Principal Component Technique Based on the LASSO , 2003 .
[20] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[21] Hongyuan Zha,et al. Low-Rank Approximations with Sparse Factors II: Penalized Methods with Discrete Newton-Like Iterations , 2004, SIAM J. Matrix Anal. Appl..
[22] Arkadi Nemirovski,et al. Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..
[23] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[24] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[25] A. d'Aspremont,et al. Smooth Optimization for Sparse Semidefinite Programs , 2005 .
[26] Arkadi Nemirovski,et al. Non-euclidean restricted memory level method for large-scale convex optimization , 2005, Math. Program..
[27] D. Donoho,et al. Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[28] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.