HOST GALAXY SPECTRA AND CONSEQUENCES FOR SUPERNOVA TYPING FROM THE SDSS SN SURVEY

We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

[1]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[2]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[3]  K. Dawson,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. III. CORRELATED PROPERTIES OF TYPE Ia SUPERNOVAE AND THEIR HOSTS AT 0.9 < z < 1.46 , 2012, 1201.3989.

[4]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the mass-metallicity relationship , 2012, 1209.1636.

[5]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[6]  Karl Glazebrook,et al.  The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.

[7]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[8]  R. Nichol,et al.  THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES , 2011, 1108.4923.

[9]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[10]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[11]  Adam G. Riess,et al.  Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7 , 2004 .

[12]  J. Neill,et al.  THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE , 2009, 0911.0690.

[13]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[14]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[15]  S. Jha,et al.  Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity , 2008, 0805.4360.

[16]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[17]  J. Frieman,et al.  A MISMATCH IN THE ULTRAVIOLET SPECTRA BETWEEN LOW-REDSHIFT AND INTERMEDIATE-REDSHIFT TYPE Ia SUPERNOVAE AS A POSSIBLE SYSTEMATIC UNCERTAINTY FOR SUPERNOVA COSMOLOGY , 2010, 1010.2749.

[18]  Niall Gaffney,et al.  Ten Year Review of Queue Scheduling of the Hobby‐Eberly Telescope , 2007, 0705.3889.

[19]  Richard Kessler,et al.  PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA , 2011, 1107.5106.

[20]  R. Nichol,et al.  NTT and NOT spectroscopy of SDSS-II supernovae , 2010, 1011.5869.

[21]  C. Maraston,et al.  Stellar population models at high spectral resolution , 2011, 1109.0543.

[22]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[23]  R. Nichol,et al.  THE RISE AND FALL OF TYPE Ia SUPERNOVA LIGHT CURVES IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1001.3428.

[24]  A. Heavens,et al.  Evidence of short-lived SN Ia progenitors , 2007, 0707.1328.

[25]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[26]  M. Wagner,et al.  AN INTENSIVE HUBBLE SPACE TELESCOPE SURVEY FOR z>1 TYPE Ia SUPERNOVAE BY TARGETING GALAXY CLUSTERS , 2009, 0908.3928.

[27]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[28]  C. Tao,et al.  HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY , 2013, 1304.4720.

[29]  S. Rodney,et al.  FUZZY SUPERNOVA TEMPLATES. II. PARAMETER ESTIMATION , 2010, 1003.5724.

[30]  R. Nichol,et al.  THE FUNDAMENTAL METALLICITY RELATION REDUCES TYPE Ia SN HUBBLE RESIDUALS MORE THAN HOST MASS ALONE , 2012, 1212.4848.

[31]  R. Nichol,et al.  SPECTROSCOPIC PROPERTIES OF STAR-FORMING HOST GALAXIES AND TYPE Ia SUPERNOVA HUBBLE RESIDUALS IN A NEARLY UNBIASED SAMPLE , 2011, 1110.5517.

[32]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[33]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[34]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[35]  Adam G. Riess,et al.  THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1005.4687.

[36]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[37]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[38]  K. Dawson,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE , 2011, 1110.6442.

[39]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[40]  J. Kneib,et al.  Stellar Velocity Dispersions and Emission Line Properties of Sdss-iii/boss Galaxies Journal Article , 2022 .

[41]  N. B. Suntzeff,et al.  The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry , 2007, astro-ph/0701043.

[42]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[43]  A. Filippenko TYPE IA SUPERNOVAE IN ELLIPTICAL AND SPIRAL GALAXIES: POSSIBLE DIFFERENCES IN PHOTOMETRIC HOMOGENEITY , 1989 .

[44]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[45]  J. Vanderplas,et al.  First-year Sloan Digital Sky Survey-II supernova results: consistency and constraints with other intermediate-redshift data sets , 2009, 0910.2193.

[46]  T. Pritchard,et al.  RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE , 2010 .

[47]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[48]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[49]  Ulrich Hopp,et al.  FIRST-YEAR SPECTROSCOPY FOR THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY , 2008, 0802.3220.

[50]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[51]  R. Nichol,et al.  IMPROVED CONSTRAINTS ON TYPE Ia SUPERNOVA HOST GALAXY PROPERTIES USING MULTI-WAVELENGTH PHOTOMETRY AND THEIR CORRELATIONS WITH SUPERNOVA PROPERTIES , 2011, 1107.6003.

[52]  Adam D. Myers,et al.  Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.

[53]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[54]  23 High Redshift Supernovae from the IfA Deep Survey: Doubling the SN Sample at z>0.7 , 2003, astro-ph/0310843.

[55]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[56]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[57]  R. Nichol,et al.  PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE , 2010, 1001.0738.

[58]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[59]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[60]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II (SDSS-II) SUPERNOVA RESULTS: CONSTRAINTS ON NONSTANDARD COSMOLOGICAL MODELS , 2009, 0908.4276.

[61]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[62]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[63]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[64]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[65]  A. Connolly,et al.  SPECTROSCOPIC DETERMINATION OF THE LOW-REDSHIFT TYPE Ia SUPERNOVA RATE FROM THE SLOAN DIGITAL SKY SURVEY , 2011, 1102.1485.

[66]  K. Dawson,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS , 2010, 1010.5786.

[67]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[68]  Correlations between SDSS Type Ia Supernova Rates and Host Galaxy Properties , 2013, 1301.6623.

[69]  R. Nichol,et al.  SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy , 2012, 1211.1386.

[70]  P. Berlind,et al.  Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae , 2005 .

[71]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[72]  R. Nichol,et al.  A MEASUREMENT OF THE RATE OF TYPE Ia SUPERNOVAE IN GALAXY CLUSTERS FROM THE SDSS-II SUPERNOVA SURVEY , 2010, 1003.1521.

[73]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[74]  I. Hook,et al.  An Efficient Approach to Obtaining Large Numbers of Distant Supernova Host Galaxy Redshifts , 2012, Publications of the Astronomical Society of Australia.

[75]  David Branch,et al.  Spectroscopic differences between supernovae of type Ia in early-type and in late-type galaxies , 1993 .

[76]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: correlation functions, peculiar velocities and the matter density of the Universe , 2002, astro-ph/0212375.

[77]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[78]  R. Nichol,et al.  TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY , 2012, 1206.2210.

[79]  HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES , 2009, 0912.0929.

[80]  R. Nichol,et al.  THE EFFECT OF WEAK LENSING ON DISTANCE ESTIMATES FROM SUPERNOVAE , 2013, 1307.2566.

[81]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[82]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[83]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[84]  Robert C. Nichol,et al.  SINGLE OR DOUBLE DEGENERATE PROGENITORS? SEARCHING FOR SHOCK EMISSION IN THE SDSS-II TYPE Ia SUPERNOVAE , 2010, 1008.4797.

[85]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[86]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[87]  David O. Jones,et al.  A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS , 2012, 1201.2470.

[88]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[89]  Melvin M. Varughese,et al.  PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II , 2011, 1111.5328.

[90]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[91]  Alexander S. Szalay,et al.  Multidimensional indexing tools for the virtual observatory , 2007 .

[92]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[93]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[94]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[95]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[96]  R. Nichol,et al.  COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY , 2012, 1211.4480.

[97]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[98]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[99]  I. Hook,et al.  THE EFFECT OF PROGENITOR AGE AND METALLICITY ON LUMINOSITY AND 56Ni YIELD IN TYPE Ia SUPERNOVAE , 2008, 0810.0031.