Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility

Metal organic chemical vapor deposition of GaAs on standard nominal 300 mm Si(001) wafers was studied. Antiphase boundary (APB) free epitaxial GaAs films as thin as 150 nm were obtained. The APB-free films exhibit an improvement of the room temperature photoluminescence signal with an increase of the intensity of almost a factor 2.5. Hall effect measurements show an electron mobility enhancement from 200 to 2000 cm2/V s. The GaAs layers directly grown on industrial platform with no APBs are perfect candidates for being integrated as active layers for nanoelectronic as well as optoelectronic devices in a CMOS environment.

[1]  Y. Su,et al.  Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask , 2012, Nanotechnology.

[2]  Shirai,et al.  Evidence of spontaneous formation of steps on silicon (100). , 1996, Physical review. B, Condensed matter.

[3]  N. Pan,et al.  GaAs MOSFET using InAlP native oxide as gate dielectric , 2004, IEEE Electron Device Letters.

[4]  M. Akiyama,et al.  Growth of high quality GaAs layers on Si substrates by MOCVD , 1986 .

[5]  Chih-Hung Wu,et al.  Heteroepitaxial growth of GaAs on Si by MOVPE using a-GaAs/a-Si double-buffer layers , 2006 .

[6]  S. Li,et al.  The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon , 1977 .

[7]  K. Volz,et al.  Influence of crystal polarity on crystal defects in GaP grown on exact Si (001) , 2011 .

[8]  H. Tan,et al.  Effects of annealing and substrate orientation on epitaxial growth of GaAs on Si , 2009 .

[9]  M. D. Croon,et al.  Pressure and temperature dependence of silicon doping of GaAs using Si2H6 in metalorganic chemical vapour deposition , 1992 .

[10]  D. Kwong,et al.  Evolution of silicon surface morphology during H2 annealing in a rapid thermal chemical vapor deposition system , 1996 .

[11]  P. Fay,et al.  Microwave performance of GaAs MOSFET with wet thermally oxidized InAlP gate dielectric , 2006, IEEE Electron Device Letters.

[12]  S. M. Ting,et al.  Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates , 2000 .

[13]  P. Bhattacharya,et al.  Molecular‐beam epitaxial growth and characterization of silicon‐doped AlGaAs and GaAs on (311)A GaAs substrates and their device applications , 1992 .

[14]  M. Yamaguchi,et al.  Film thickness dependence of dislocation density reduction in GaAs‐on‐Si substrates , 1990 .

[15]  S. Brückner,et al.  Si(100) surfaces in a hydrogen-based process ambient , 2010 .

[16]  Hadis Morkoç,et al.  Material properties of high‐quality GaAs epitaxial layers grown on Si substrates , 1986 .

[17]  X. Bao,et al.  Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices , 2014 .

[18]  S. Brückner,et al.  Anomalous double-layer step formation on Si(100) in hydrogen process ambient , 2012 .

[19]  Wang Jing,et al.  Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate , 2014 .

[20]  P. Kleinschmidt,et al.  Atomic surface structure of Si(1 0 0) substrates prepared in a chemical vapor environment , 2010 .

[21]  Roughness Assessment of Polysilicon Using Power Spectral Density , 1993 .

[22]  J. C. Irvin,et al.  Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300°K , 1968 .

[23]  H. Horie,et al.  Atomic Force Microscopy Observation of Si(100) Surface after Hydrogen Annealing , 1994 .

[24]  Wolfgang Stolz,et al.  Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions , 2008 .

[25]  M. Hudait,et al.  Si incorporation and Burstein-Moss shift in n-type GaAs , 1999 .

[26]  M. Carroll,et al.  Defect reduction of GaAs/Si epitaxy by aspect ratio trapping , 2008 .

[27]  X. Ren,et al.  Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition , 2015 .

[28]  Hadis Morkoç,et al.  Gallium arsenide and other compound semiconductors on silicon , 1990 .

[29]  S. Mikhrin,et al.  Continuous-wave operation of long-wavelength quantum-dot diode laser on a GaAs substrate , 1999, IEEE Photonics Technology Letters.

[30]  H. Bender,et al.  Surface reconstruction of hydrogen annealed (100) silicon , 1994 .

[31]  B. Tillack,et al.  Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy , 2011 .

[32]  S. Brückner,et al.  Surface preparation of Si(1 0 0) by thermal oxide removal in a chemical vapor environment , 2011 .

[33]  M. Akiyama,et al.  Growth of GaAs on Si by MOVCD , 1984 .

[34]  S. Brückner,et al.  In situ investigation of hydrogen interacting with Si(100) , 2011 .

[35]  Robert Mertens,et al.  Band‐gap narrowing in highly doped n‐ and p‐type GaAs studied by photoluminescence spectroscopy , 1989 .

[36]  Masahiro Akiyama,et al.  Growth of Single Domain GaAs Layer on (100)-Oriented Si Substrate by MOCVD , 1984 .

[37]  Wiebke Witte,et al.  GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration , 2011 .

[38]  A. Laracuente,et al.  Step structures and energies on monohydride-terminated vicinal Si(001) surfaces , 2001 .