Friedgut-Kalai-Naor Theorem for Slices of the Boolean Cube

The Friedgut--Kalai--Naor theorem states that if a Boolean function $f\colon \{0,1\}^n \to \{0,1\}$ is close (in $L^2$-distance) to an affine function $\ell(x_1,...,x_n) = c_0 + \sum_i c_i x_i$, then $f$ is close to a Boolean affine function (which necessarily depends on at most one coordinate). We prove a similar theorem for functions defined over $\binom{[n]}{k} = \{(x_1,...,x_n) \in \{0,1\}^n : \sum_i x_i = k \}$.

[1]  Murali K. Srinivasan Symmetric chains, Gelfand–Tsetlin chains, and the Terwilliger algebra of the binary Hamming scheme , 2010, 1001.0280.

[2]  Ryan O'Donnell,et al.  Noise stability of functions with low influences: Invariance and optimality , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[3]  Piotr Nayar,et al.  FKN Theorem on the biased cube , 2013, 1311.3179.

[4]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[5]  R. Ahlswede,et al.  The diametric theorem in Hamming spaces-optimal anticodes , 1997, Proceedings of IEEE International Symposium on Information Theory.

[6]  Guy Kindler,et al.  Direct Sum Testing , 2015, SIAM J. Comput..

[7]  Jakub Onufry Wojtaszczyk,et al.  Sums of independent variables approximating a boolean function y , 2010 .

[8]  Yuval Filmus,et al.  A quasi-stability result for dictatorships in Sn , 2012, Comb..

[9]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[10]  A. Rubinstein,et al.  Boolean functions whose Fourier transform is concentrated on pairwise disjoint subsets of the input , 2015, 1512.09045.

[11]  Guy Kindler,et al.  Property Testing, PCP, andJuntas , 2002, Electron. Colloquium Comput. Complex..

[12]  Ryan O'Donnell,et al.  Analysis of Boolean Functions , 2014, ArXiv.

[13]  Rudolf Ahlswede,et al.  The Diametric Theorem in Hamming Spaces-Optimal Anticodes , 1998 .

[14]  Shagnik Das,et al.  Removal and Stability for Erdös-Ko-Rado , 2016, SIAM J. Discret. Math..

[15]  Assaf Naor,et al.  Boolean functions whose Fourier transform is concentrated on the first two levels , 2002, Adv. Appl. Math..

[16]  Béla Bollobás,et al.  On the stability of the Erdős-Ko-Rado theorem , 2016, J. Comb. Theory, Ser. A.

[17]  Karl Wimmer,et al.  Low Influence Functions over Slices of the Boolean Hypercube Depend on Few Coordinates , 2014, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[18]  Nathan Keller A simple reduction from a biased measure on the discrete cube to the uniform measure , 2012, Eur. J. Comb..

[19]  Elchanan Mossel,et al.  Harmonicity and Invariance on Slices of the Boolean Cube , 2016, Computational Complexity Conference.

[20]  Guy Kindler,et al.  Invariance Principle on the Slice , 2015, CCC.

[21]  Ryan O'Donnell,et al.  KKL, Kruskal-Katona, and Monotone Nets , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[22]  Yuval Filmus,et al.  An Orthogonal Basis for Functions over a Slice of the Boolean Hypercube , 2014, Electron. J. Comb..

[23]  Jeff Kahn,et al.  On "stability" in the Erdös-Ko-Rado Theorem , 2016, SIAM J. Discret. Math..

[24]  David Ellis,et al.  A stability result for balanced dictatorships in Sn , 2012, Random Struct. Algorithms.

[25]  Ehud Friedgut,et al.  On the measure of intersecting families, uniqueness and stability , 2008, Comb..

[26]  S. Safra,et al.  Noise-Resistant Boolean-Functions are Juntas , 2003 .

[27]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[28]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[29]  Jakub Onufry Wojtaszczyk,et al.  On some extensions of the FKN theorem , 2015, Theory Comput..