Total least squares in fuzzy system identification: An application to an industrial engine
暂无分享,去创建一个
[1] O. Nelles. Nonlinear System Identification , 2001 .
[2] Robert Babuska,et al. Fuzzy Modeling for Control , 1998 .
[3] Til Aach,et al. Bayesian illumination invariant change detection using a total least squares test statistic , 2001 .
[4] Kenneth J. Hunt. Induction of decision trees for rule-based modelling and control , 1992, Proceedings of the 1992 IEEE International Symposium on Intelligent Control.
[5] Robert Shorten,et al. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..
[6] A. Rakar,et al. Identification of nonlinear processes and model based fault isolation using local linear models , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).
[7] L. A. Aguirre,et al. Imposing steady-state performance on identified nonlinear polynomial models by means of constrained parameter estimation , 2004 .
[8] Rolf Isermann,et al. Stationäre und dynamische Motorvermessung zur Auslegung von Steuerkennfeldern – Eine kurze Übersicht (Static and Dynamic Measurements of Combustion Engines for Optimization of Control Mappings – A Brief Survey) , 2005, Autom..
[9] P. D. Groen. An Introduction to Total Least Squares , 1998, math/9805076.
[10] Sabine Van Huffel,et al. Overview of total least-squares methods , 2007, Signal Process..
[11] R. Babu,et al. Engine load prediction in off-road vehicles using multi-objective nonlinear identification , 2004 .
[12] N. Draper,et al. Applied Regression Analysis. , 1967 .
[13] Gene H. Golub,et al. An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.
[14] Tor Arne Johansen,et al. Multiobjective identification of Takagi-Sugeno fuzzy models , 2003, IEEE Trans. Fuzzy Syst..
[15] Tor Arne Johansen,et al. Off-equilibrium linearisation and design of gain-scheduled control with application to vehicle speed control , 1998 .
[16] Ferenc Szeifert,et al. Fuzzy modeling with multivariate membership functions: gray-box identification and control design , 2001, IEEE Trans. Syst. Man Cybern. Part B.
[17] Stefan Jakubek,et al. A local neuro-fuzzy network for high-dimensional models and optimization , 2006, Eng. Appl. Artif. Intell..
[18] Berend Roorda. Algorithms for global total least squares modelling of finite multivariable time series , 1995, Autom..
[19] M. Setnes,et al. Constrained parameter estimation in fuzzy modeling , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).
[20] Ricardo H. C. Takahashi,et al. Nonlinear Identification Using Prior Knowledge of Fixed Points: a Multiobjective Approach , 2003, Int. J. Bifurc. Chaos.
[21] Oliver Nelles,et al. LOLIMOT - Lokale, lineare Modelle zur Identifikation nichtlinearer, dynamischer Systeme , 1997 .
[22] M. Kozek,et al. Identification of Hammerstein/Wiener nonlinear systems with extended Kalman filters , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[23] J. Willems,et al. Application of structured total least squares for system identification and model reduction , 2005, IEEE Transactions on Automatic Control.
[24] Ferenc Szeifert,et al. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.
[25] Emil Levi,et al. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[26] Christiaan Heij,et al. Consistency of system identification by global total least squares , 1999, Autom..