Total least squares in fuzzy system identification: An application to an industrial engine

Takagi-Sugeno fuzzy models have proved to be a powerful tool for the identification of nonlinear dynamic systems. Their generic nonlinear model representation is particularly useful if information about the structure of the nonlinearity is available. In view of a practical applicability in industrial applications two important issues are addressed. First, the problem of unbiased estimation of local model parameters in the presence of input and output noise is considered. For that purpose the concept of total least squares for parameter estimation is reviewed and a related partitioning algorithm based on statistical criteria is presented. Second, the steady-state accuracy of dynamic models is addressed. A concept of constrained TLS parameter optimisation is introduced which enforces the adherence of the model to selected steady-state operating points and thus significantly improves the model accuracy during steady-state phases. Results from a simulation model and from an industrial gas engine power plant demonstrate the capabilities of the proposed concepts.

[1]  O. Nelles Nonlinear System Identification , 2001 .

[2]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[3]  Til Aach,et al.  Bayesian illumination invariant change detection using a total least squares test statistic , 2001 .

[4]  Kenneth J. Hunt Induction of decision trees for rule-based modelling and control , 1992, Proceedings of the 1992 IEEE International Symposium on Intelligent Control.

[5]  Robert Shorten,et al.  On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..

[6]  A. Rakar,et al.  Identification of nonlinear processes and model based fault isolation using local linear models , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[7]  L. A. Aguirre,et al.  Imposing steady-state performance on identified nonlinear polynomial models by means of constrained parameter estimation , 2004 .

[8]  Rolf Isermann,et al.  Stationäre und dynamische Motorvermessung zur Auslegung von Steuerkennfeldern – Eine kurze Übersicht (Static and Dynamic Measurements of Combustion Engines for Optimization of Control Mappings – A Brief Survey) , 2005, Autom..

[9]  P. D. Groen An Introduction to Total Least Squares , 1998, math/9805076.

[10]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[11]  R. Babu,et al.  Engine load prediction in off-road vehicles using multi-objective nonlinear identification , 2004 .

[12]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[13]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[14]  Tor Arne Johansen,et al.  Multiobjective identification of Takagi-Sugeno fuzzy models , 2003, IEEE Trans. Fuzzy Syst..

[15]  Tor Arne Johansen,et al.  Off-equilibrium linearisation and design of gain-scheduled control with application to vehicle speed control , 1998 .

[16]  Ferenc Szeifert,et al.  Fuzzy modeling with multivariate membership functions: gray-box identification and control design , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Stefan Jakubek,et al.  A local neuro-fuzzy network for high-dimensional models and optimization , 2006, Eng. Appl. Artif. Intell..

[18]  Berend Roorda Algorithms for global total least squares modelling of finite multivariable time series , 1995, Autom..

[19]  M. Setnes,et al.  Constrained parameter estimation in fuzzy modeling , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[20]  Ricardo H. C. Takahashi,et al.  Nonlinear Identification Using Prior Knowledge of Fixed Points: a Multiobjective Approach , 2003, Int. J. Bifurc. Chaos.

[21]  Oliver Nelles,et al.  LOLIMOT - Lokale, lineare Modelle zur Identifikation nichtlinearer, dynamischer Systeme , 1997 .

[22]  M. Kozek,et al.  Identification of Hammerstein/Wiener nonlinear systems with extended Kalman filters , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[23]  J. Willems,et al.  Application of structured total least squares for system identification and model reduction , 2005, IEEE Transactions on Automatic Control.

[24]  Ferenc Szeifert,et al.  Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Emil Levi,et al.  Identification of complex systems based on neural and Takagi-Sugeno fuzzy model , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[26]  Christiaan Heij,et al.  Consistency of system identification by global total least squares , 1999, Autom..