Grothendieck's constant and local models for noisy entangled quantum states
暂无分享,去创建一个
[1] Steven R. Finch,et al. Mathematical constants , 2005, Encyclopedia of mathematics and its applications.
[2] N. Gisin,et al. A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.
[3] V. Scarani,et al. BELL'S INEQUALITIES DETECT EFFICIENT ENTANGLEMENT , 2003, quant-ph/0310166.
[4] Barbara M Terhal,et al. Symmetric extensions of quantum States and local hidden variable theories. , 2003, Physical review letters.
[5] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[6] P. Parrilo,et al. Distinguishing separable and entangled states. , 2001, Physical review letters.
[7] J. Barrett. Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.
[8] C. Monroe,et al. Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.
[9] Jan-Åke Larsson. Modeling the singlet state with local variables , 1999, quant-ph/9901074.
[10] H. Weinfurter,et al. Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.
[11] N. Gisin,et al. Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.
[12] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[13] N. Gisin. Hidden quantum nonlocality revealed by local filters , 1996 .
[14] Charles H. Bennett,et al. Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.
[15] Popescu,et al. Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality. , 1995, Physical review letters.
[16] Peter C. Fishburn,et al. Bell Inequalities, Grothendieck's Constant, and Root Two , 1994, SIAM J. Discret. Math..
[17] B. M. Fulk. MATH , 1992 .
[18] N. Gisin. Bell's inequality holds for all non-product states , 1991 .
[19] Itamar Pitowsky,et al. Correlation polytopes: Their geometry and complexity , 1991, Math. Program..
[20] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[21] B. Tsirelson. Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .
[22] A. Garg. Detector error and Einstein-Podolsky-Rosen correlations , 1983 .
[23] G. Roger,et al. Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .
[24] P. Grangier,et al. Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .
[25] J. Krivine. Constantes de Grothendieck et fonctions de type positif sur les sphères , 1979 .
[26] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[27] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[28] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .