Grothendieck's constant and local models for noisy entangled quantum states

We relate the nonlocal properties of noisy entangled states to Grothendieck's constant, a mathematical constant appearing in Banach space theory. For two-qubit Werner states rho p W =p|psi–><psi–|+(1–p)[openface 1]/4, we show that there is a local model for projective measurements if and only if p<=1/KG(3), where KG(3) is Grothendieck's constant of order 3. Known bounds on KG(3) prove the existence of this model at least for p<~0.66, quite close to the current region of Bell violation, p~0.71. We generalize this result to arbitrary quantum states.

[1]  Steven R. Finch,et al.  Mathematical constants , 2005, Encyclopedia of mathematics and its applications.

[2]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[3]  V. Scarani,et al.  BELL'S INEQUALITIES DETECT EFFICIENT ENTANGLEMENT , 2003, quant-ph/0310166.

[4]  Barbara M Terhal,et al.  Symmetric extensions of quantum States and local hidden variable theories. , 2003, Physical review letters.

[5]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[6]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[7]  J. Barrett Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality , 2001, quant-ph/0107045.

[8]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[9]  Jan-Åke Larsson Modeling the singlet state with local variables , 1999, quant-ph/9901074.

[10]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[11]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[12]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[13]  N. Gisin Hidden quantum nonlocality revealed by local filters , 1996 .

[14]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[15]  Popescu,et al.  Bell's Inequalities and Density Matrices: Revealing "Hidden" Nonlocality. , 1995, Physical review letters.

[16]  Peter C. Fishburn,et al.  Bell Inequalities, Grothendieck's Constant, and Root Two , 1994, SIAM J. Discret. Math..

[17]  B. M. Fulk MATH , 1992 .

[18]  N. Gisin Bell's inequality holds for all non-product states , 1991 .

[19]  Itamar Pitowsky,et al.  Correlation polytopes: Their geometry and complexity , 1991, Math. Program..

[20]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[21]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[22]  A. Garg Detector error and Einstein-Podolsky-Rosen correlations , 1983 .

[23]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[24]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[25]  J. Krivine Constantes de Grothendieck et fonctions de type positif sur les sphères , 1979 .

[26]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[27]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[28]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .