Surface Extraction from Multi-field Particle Volume Data Using Multi-dimensional Cluster Visualization

Data sets resulting from physical simulations typically contain a multitude of physical variables. It is, therefore, desirable that visualization methods take into account the entire multi-field volume data rather than concentrating on one variable. We present a visualization approach based on surface extraction from multi-field particle volume data. The surfaces segment the data with respect to the underlying multi-variate function. Decisions on segmentation properties are based on the analysis of the multi-dimensional feature space. The feature space exploration is performed by an automated multi-dimensional hierarchical clustering method, whose resulting density clusters are shown in the form of density level sets in a 3D star coordinate layout. In the star coordinate layout, the user can select clusters of interest. A selected cluster in feature space corresponds to a segmenting surface in object space. Based on the segmentation property induced by the cluster membership, we extract a surface from the volume data. Our driving applications are smoothed particle hydrodynamics (SPH) simulations, where each particle carries multiple properties. The data sets are given in the form of unstructured point-based volume data. We directly extract our surfaces from such data without prior resampling or grid generation. The surface extraction computes individual points on the surface, which is supported by an efficient neighborhood computation. The extracted surface points are rendered using point-based rendering operations. Our approach combines methods in scientific visualization for object-space operations with methods in information visualization for feature-space operations.

[1]  Sung-Chul Yoon,et al.  Remnant evolution after a carbon–oxygen white dwarf merger , 2007, 0704.0297.

[2]  Noel Walkington,et al.  Robust Three Dimensional Delaunay Refinement , 2004, IMR.

[3]  Edward J. Wegman,et al.  On Methods of Computer Graphics for Visualizing Densities , 2002 .

[4]  Kwan-Liu Ma,et al.  A Tri-Space Visualization Interface for Analyzing Time-Varying Multivariate Volume Data , 2007, EuroVis.

[5]  J. Craig Wheeler,et al.  The Quasi-Equilibrium-reduced α-Network , 1998, The Astrophysical Journal.

[6]  Lars Linsen,et al.  Direct Isosurface Extraction from Scattered Volume Data , 2006, EuroVis.

[7]  Hans-Peter Kriegel,et al.  'Circle Segments': A Technique for Visually Exploring Large Multidimensional Data Sets , 1996 .

[8]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[9]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.

[10]  Alan Watt,et al.  3D Computer Graphics , 1993 .

[11]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[12]  WhittedTurner An improved illumination model for shaded display , 1979 .

[13]  Suresh K. Lodha,et al.  Scattered Data Techniques for Surfaces , 1997, Scientific Visualization Conference (dagstuhl '97).

[14]  Lars Linsen,et al.  A User-friendly Tool for Semi-automated Segmentation and Surface Extraction from Color Volume Data Using Geometric Feature-space Operations , 2008, Visualization in Medicine and Life Sciences.

[15]  Paul A. Navrátil,et al.  Visualization of Cosmological Particle-Based Datasets , 2007, IEEE Transactions on Visualization and Computer Graphics.

[16]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[17]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[18]  Leif Kobbelt,et al.  Phong Splatting , 2004, PBG.

[19]  Q. Du,et al.  Recent progress in robust and quality Delaunay mesh generation , 2006 .

[20]  Karsten Danzmann,et al.  LISA mission overview , 2000 .

[21]  Arthur Appel,et al.  Some techniques for shading machine renderings of solids , 1968, AFIPS Spring Joint Computing Conference.

[22]  Matthew R. Bate,et al.  A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux‐limited diffusion approximation , 2005 .

[23]  Charl P. Botha,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization (2007) Interactive Visualization of Multi-field Medical Data Using Linked Physical and Feature-space Views , 2022 .

[24]  Han-Wei Shen,et al.  Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues , 2006, IEEE Transactions on Visualization and Computer Graphics.

[25]  Hiroshi Akibay,et al.  A tri-space visualization interface for analyzing time-varying multivariate volume data , 2007 .

[26]  Eser Kandogan,et al.  Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.

[27]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[28]  Maria Cristina Ferreira de Oliveira,et al.  Viz3D: effective exploratory visualization of large multidimensional data sets , 2004, Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

[29]  P. L. GeorgeAugust Reasonably Eecient Delaunay Based Mesh Generator in 3 Dimensions , 1995 .

[30]  Rick Walker,et al.  Visualization of Smoothed Particle Hydrodynamics for Astrophysics , 2005, TPCG.

[31]  D. W. Scott,et al.  Multidimensional Density Estimation , 2005 .

[32]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[33]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[34]  Nickolas S. Sapidis,et al.  Domain Delaunay Tetrahedrization of arbitrarily shaped curved polyhedra defined in a solid modeling system , 1991, SMA '91.

[35]  Gerik Scheuermann,et al.  Multifield visualization using local statistical complexity , 2007, IEEE Transactions on Visualization and Computer Graphics.

[36]  Mohammed Yeasin,et al.  Visualization of High Dimensional Data using an Automated 3D Star Co-ordinate System , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[37]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[38]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[39]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[40]  Bernhard Preim,et al.  Interactive Visual Analysis of Perfusion Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[41]  Ivana Kolingerová,et al.  Post-optimization of Delaunay tetrahedrization , 2001, Proceedings Spring Conference on Computer Graphics.

[42]  Christopher S. Co,et al.  Isosurface Generation for Large-Scale Scattered Data Visualization , 2005 .

[43]  Daniel J. Price,et al.  magma: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications , 2007, 0705.1441.

[44]  Enrico Ramirez-Ruiz,et al.  Simulating black hole white dwarf encounters , 2008, Comput. Phys. Commun..

[45]  P. George,et al.  Automatic mesh generator with specified boundary , 1991 .

[46]  Hans-Peter Seidel,et al.  Multifield-Graphs: An Approach to Visualizing Correlations in Multifield Scalar Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[47]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[48]  Daniel A. Keim,et al.  HD-Eye: Visual Mining of High-Dimensional Data , 1999, IEEE Computer Graphics and Applications.

[49]  Lars Linsen,et al.  Splat-based Ray Tracing of Point Clouds , 2007, J. WSCG.