Consistency of a pair of generalized Sylvester equations
暂无分享,去创建一个
[1] J. O'Reilly,et al. On eigenstructure assignment in linear multivariable systems , 1982 .
[2] W. E. Roth,et al. The equations $AX-YB=C$ and $AX-XB=C$ in matrices , 1952 .
[3] G. Duan,et al. Simple algorithm for robust pole assignment in linear output feedback , 1991 .
[4] VLADIMÍR KUČERA,et al. Constant solutions of polynomial equations , 1991 .
[5] B. Francis. The linear multivariable regulator problem , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.
[6] Harley Flanders,et al. On the matrix equations $AX - XB = C$ and $AX - YB = C$ , 1977 .
[7] B. Kågström,et al. Generalized Schur methods with condition estimators for solving the generalized Sylvester equation , 1989 .
[8] J. Woude,et al. Almost non-interacting control by measurement feedback , 1987 .
[9] J. O'Reilly,et al. The Minimum Number of Degrees of Freedom in State Feedback Control , 1985, 1985 American Control Conference.
[10] G. Stewart. Error and Perturbation Bounds for Subspaces Associated with Certain Eigenvalue Problems , 1973 .
[11] M. M. Fahmy,et al. Parametric eigenstructure assignment for continuous-time descriptor systems , 1989 .
[12] B. Porter,et al. Algorithm for closed-loop eigenstructure assignment by state feedback in multivariable linear systems , 1978 .