Investigation of the acidic nature of MCM-68 zeolite based on the adsorption of CO and bulky probe molecules

[1]  T. Tatsumi,et al.  Determination of Acid Site Location in Dealuminated MCM-68 by 27Al MQMAS NMR and FT-IR Spectroscopy with Probe Molecules , 2018 .

[2]  S. Inagaki,et al.  Preparation of MSE-type Titanosilicate via Crystallization of Titanoaluminosilicate and Its Catalytic Use for Selective Oxidation of Phenol Using H2O2 , 2017 .

[3]  S. Inagaki,et al.  Selective Production of Light Olefins over MSE-type Zeolite Catalyst , 2017 .

[4]  S. Inagaki,et al.  Catalytic Performance of Ce-modified MCM-68 Zeolite in the Dimethyl Ether-to-Olefin Reaction: Impact of High Calcination Temperature , 2017 .

[5]  S. Inagaki,et al.  Selective formation of light olefins from dimethyl ether over MCM-68 modified with phosphate species , 2016 .

[6]  H. Yamazaki,et al.  Improvement in the catalytic properties of ZSM-5 zeolite nanoparticles via mechanochemical and chemical modifications , 2016 .

[7]  S. Inagaki,et al.  Enhancement of para-selectivity in the phenol oxidation with H2O2 over Ti-MCM-68 zeolite catalyst , 2016 .

[8]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[9]  S. Inagaki,et al.  High-Performance Catalysts with MSE-Type Zeolite Framework , 2015, Topics in Catalysis.

[10]  S. Inagaki,et al.  Remarkable enhancement of catalytic activity and selectivity of MSE-type zeolite by post-synthetic modification , 2015 .

[11]  S. Inagaki,et al.  Catalytic conversion of dimethyl ether into propylene over MCM-68 zeolite , 2014 .

[12]  S. Inagaki,et al.  Ti-YNU-2: A Microporous Titanosilicate with Enhanced Catalytic Performance for Phenol Oxidation , 2014 .

[13]  S. Inagaki,et al.  Hexane cracking catalyzed by MSE-type zeolite as a solid acid catalyst , 2014 .

[14]  H. Yamazaki,et al.  IR Characterization of Homogeneously Mixed Silica–Alumina Samples and Dealuminated Y Zeolites by Using Pyridine, CO, and Propene Probe Molecules , 2013 .

[15]  H. Yamazaki,et al.  Facile Fabrication of ZSM-5 Zeolite Catalyst with High Durability to Coke Formation during Catalytic Cracking of Paraffins , 2013 .

[16]  S. Inagaki,et al.  Selective formation of propylene by hexane cracking over MCM-68 zeolite catalyst. , 2010, Chemical communications.

[17]  J. Čejka,et al.  Acidity of MCM-58 and MCM-68 zeolites in comparison with some other 12-ring zeolites , 2010 .

[18]  J. Čejka,et al.  The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite , 2009 .

[19]  S. Abelló,et al.  Quantification of enhanced acid site accessibility in hierarchical zeolites – The accessibility index , 2009 .

[20]  C. Christensen,et al.  Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes , 2009 .

[21]  T. Shibata,et al.  The alkylation of naphthalene over MCM-68 with MSE topology , 2009 .

[22]  Jong‐Ho Kim,et al.  Synthetic investigation on MCM-68 zeolite with MSE topology and its application for shape-selective alkylation of biphenyl , 2008 .

[23]  Takashi Tatsumi,et al.  Synthesis and catalytic performance of Ti-MCM-68 for effective oxidation reactions. , 2008, Chemical communications.

[24]  N. Essayem,et al.  Comparative study of transformation of linear alkanes over modified mordenites and sulphated zirconia catalysts : Influence of the zeolite acidity on the performance of n-butane isomerization , 2008 .

[25]  V. Murzin,et al.  Nature, strength and accessibility of acid sites in micro/mesoporous catalysts obtained by recrystallization of zeolite BEA , 2007 .

[26]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[27]  S. Inagaki,et al.  Shape selectivity of MWW-type aluminosilicate zeolites in the alkylation of toluene with methanol , 2007 .

[28]  Mark E. Davis,et al.  A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications , 2006 .

[29]  D. Dorset,et al.  Crystal structure of zeolite MCM-68: a new three-dimensional framework with large pores. , 2006, The journal of physical chemistry. B.

[30]  F. Fajula,et al.  Accessibility of the acid sites in dealuminated small-port mordenites studied by FTIR of co-adsorbed alkylpyridines and CO , 2004 .

[31]  T. Hecht,et al.  Characterization and catalytic evaluation of zeolite MCM-68 , 2004 .

[32]  M. Bevilacqua,et al.  A study of the localization and accessibility of Brønsted and Lewis acid sites of H-mordenite through the FT-IR spectroscopy of adsorbed branched nitriles , 2002 .

[33]  D. Olson,et al.  Surface Acidic Properties of A HMCM-22 Zeolite: Collidine Poisoning and Hydrocarbon Adsorption Studies , 2002 .

[34]  A. Vimont,et al.  2D-COS IR study of coking in xylene isomerisation on H-MFI zeolite , 2001 .

[35]  M. Trombetta,et al.  A study of the external and internal sites of MFI-type zeolitic materials through the FT-IR investigation of the adsorption of nitriles , 2001 .

[36]  K. Domen,et al.  Migration of butene isomers onto the acidic OH groups in small micropores of ferrierite , 2000 .

[37]  K. Domen,et al.  Shape selective adsorption of olefins on Brønsted acidic OH (OD) groups on ferrierite studied by FT-IR , 2000 .

[38]  M. Trombetta,et al.  An FT-IR study of the internal and external surfaces of HZSM5 zeolite , 2000 .

[39]  M. Trombetta,et al.  Surface acidity modifications induced by thermal treatments and acid leaching on microcrystalline H-BEA zeolite. A FTIR, XRD and MAS-NMR study , 2000 .

[40]  M. Delgado,et al.  The combined use of acetonitrile and adamantane–carbonitrile as IR spectroscopic probes to discriminate between external and internal surfaces of medium pore zeolites , 2000 .

[41]  J. Lercher,et al.  On the Accessibility of Acid Sites in Ferrierite for Pyridine , 1999 .

[42]  A. Corma,et al.  2,6-Di-Tert-Butyl-Pyridine as a Probe Molecule to Measure External Acidity of Zeolites , 1998 .

[43]  M. Niwa,et al.  Measurements of acidic property of zeolites by temperature programmed desorption of ammonia , 1997 .

[44]  R. Sheldon,et al.  New multifunctional probe for testing outer surface activity of zeolites: application to surface-located platinum clusters and acid sites , 1996 .

[45]  E. Benazzi,et al.  FT infrared study of Brønsted acidity of H-mordenites: Heterogeneity and effect of dealumination , 1995 .

[46]  B. A. Morrow,et al.  Infrared evidence for two isolated silanol species on activated silicas , 1991 .

[47]  F. Renzo,et al.  Study of the state of aluminium in zeolite-β , 1991 .

[48]  P. Ratnasamy,et al.  Catalytic Aluminas: Surface Models and Characterization of Surface Sites , 1978 .

[49]  G. Ghiotti,et al.  The chemisorption of carbon monoxide on various transition aluminas , 1976 .

[50]  D. J. Harrison,et al.  Vibrational spectra of the trimethylpyridmes (collidines) , 1973 .

[51]  J. Uytterhoeven,et al.  Identification of the A-type hydroxyls on silica surfaces , 1972 .

[52]  J. Peri,et al.  The surface structure of silica gel , 1968 .

[53]  R. Ikeda,et al.  Pure Quadrupole Resonance of Halogens in Some Hexahalorhenates(IV) , 1966 .