Upper bounds on the balanced 〈r, s〉-domination number of a graph

Let G = ( V , E ) be a simple graph of order n with vertex set V = { v 1 , ? , v n } and suppose that at most r i units of some commodity may be placed at any vertex v i while at least s i units must be placed in the closed neighbourhood of v i for i = 1 , ? , n . The smallest number of units that may be placed on the vertices of the graph satisfying the above requirements is called the { r , s } -domination number of the graph. The case where r = r , ? , r and s = s , ? , s is called the balanced case of { r , s } -domination. We establish three upper bounds on the { r , s } -domination number of a graph for the balanced case in this paper.

[1]  You Lu,et al.  On the {k}-domination number of Cartesian products of graphs , 2009, Discret. Math..

[2]  Michael A. Henning,et al.  On Double Domination in Graphs , 2005, Discuss. Math. Graph Theory.

[3]  Michael A. Henning,et al.  ON INTEGER DOMINATION IN GRAPHS AND VIZING-LIKE PROBLEMS , 2006 .

[4]  László Lovász,et al.  On the ratio of optimal integral and fractional covers , 1975, Discret. Math..

[5]  Vadim E. Zverovich The k-tuple domination number revisited , 2008, Appl. Math. Lett..

[6]  Hong Yan,et al.  Proof of a conjecture on k-tuple domination in graphs , 2008, Appl. Math. Lett..

[7]  Jakub Przybylo On upper bounds for multiple domination numbers of graphs , 2013, Discret. Appl. Math..

[8]  Andrei V. Gagarin,et al.  A generalised upper bound for the k-tuple domination number , 2008, Discret. Math..

[9]  Javad Mehri,et al.  3-Tuple domination number in complete grid graphs , 2006 .

[10]  Alewyn P. Burger,et al.  On the (r, s) domination number of a graph , 2008, Ars Comb..

[11]  G. E. Martin Counting: The Art of Enumerative Combinatorics , 2001 .

[12]  Jochen Harant,et al.  On Dominating Sets and Independent Sets of Graphs , 1999, Combinatorics, Probability and Computing.

[13]  Ramy S. Shaheen Bounds for the 2-domination number of toroidal grid graphs , 2009, Int. J. Comput. Math..

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  Chung-Shou Liao,et al.  K-tuple Domination in Graphs , 2003, Inf. Process. Lett..

[17]  Dieter Rautenbach,et al.  New bounds on the k-domination number and the k-tuple domination number , 2007, Appl. Math. Lett..

[18]  Andrei V. Gagarin,et al.  Randomized algorithms and upper bounds for multiple domination in graphs and networks , 2013, Discret. Appl. Math..

[19]  Gerard J. Chang The upper bound on k-tuple domination numbers of graphs , 2008, Eur. J. Comb..

[20]  Andrei V. Gagarin,et al.  Improved upper bounds for the k-tuple domination number , 2008, Australas. J Comb..