A data-driven approach for a class of stochastic dynamic optimization problems

Dynamic stochastic optimization models provide a powerful tool to represent sequential decision-making processes. Typically, these models use statistical predictive methods to capture the structure of the underlying stochastic process without taking into consideration estimation errors and model misspecification. In this context, we propose a data-driven prescriptive analytics framework aiming to integrate the machine learning and dynamic optimization machinery in a consistent and efficient way to build a bridge from data to decisions. The proposed framework tackles a relevant class of dynamic decision problems comprising many important practical applications. The basic building blocks of our proposed framework are: (1) a Hidden Markov Model as a predictive (machine learning) method to represent uncertainty; and (2) a distributionally robust dynamic optimization model as a prescriptive method that takes into account estimation errors associated with the predictive model and allows for control of the risk associated with decisions. Moreover, we present an evaluation framework to assess out-of-sample performance in rolling horizon schemes. A complete case study on dynamic asset allocation illustrates the proposed framework showing superior out-of-sample performance against selected benchmarks. The numerical results show the practical importance and applicability of the proposed framework since it extracts valuable information from data to obtain robustified decisions with an empirical certificate of out-of-sample performance evaluation.

[1]  Alexander Shapiro,et al.  Modeling time-dependent randomness in stochastic dual dynamic programming , 2019, Eur. J. Oper. Res..

[2]  Clive W. J. Granger,et al.  Stylized Facts on the Temporal and Distributional Properties of Daily Data from Speculative Markets , 1999 .

[3]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[4]  Robert J. Elliott,et al.  An application of hidden Markov models to asset allocation problems , 1997, Finance Stochastics.

[5]  Tito Homem-de-Mello,et al.  Sampling strategies and stopping criteria for stochastic dual dynamic programming: a case study in long-term hydrothermal scheduling , 2011 .

[6]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[7]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[8]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[9]  David P. Morton,et al.  Partially observable multistage stochastic programming , 2020, Oper. Res. Lett..

[10]  Bernardo K. Pagnoncelli,et al.  Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective , 2016, Eur. J. Oper. Res..

[11]  G. Pflug,et al.  The 1/ N investment strategy is optimal under high model ambiguity , 2012 .

[12]  Alexander Shapiro,et al.  Lectures on Stochastic Programming - Modeling and Theory, Second Edition , 2014, MOS-SIAM Series on Optimization.

[13]  Andrew E. B. Lim,et al.  Robust Portfolio Choice with Learning in the Framework of Regret: Single-Period Case , 2012, Manag. Sci..

[14]  T. Rydén,et al.  Stylized Facts of Daily Return Series and the Hidden Markov Model , 1998 .

[15]  Bernardo K. Pagnoncelli,et al.  Better management of production incidents in mining using multistage stochastic optimization , 2019, Resources Policy.

[16]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..

[17]  M. KarthyekRajhaaA.,et al.  Robust Wasserstein profile inference and applications to machine learning , 2019, J. Appl. Probab..

[18]  C. Patel Optimal versus Naive Diversification: How Inefficient Is the 1/N Portfolio Strategy? , 2009 .

[19]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[20]  Dimitris Bertsimas,et al.  From Predictions to Prescriptions in Multistage Optimization Problems , 2019, ArXiv.

[21]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[22]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[23]  Alexander Shapiro,et al.  On a Class of Minimax Stochastic Programs , 2004, SIAM J. Optim..

[24]  Daniel Kuhn,et al.  From Data to Decisions: Distributionally Robust Optimization is Optimal , 2017, Manag. Sci..

[25]  Davi Valladão,et al.  Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns , 2018, Ann. Oper. Res..

[26]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[27]  J. Žáčková On minimax solutions of stochastic linear programming problems , 1966 .

[28]  Güzin Bayraksan,et al.  Data-Driven Stochastic Programming Using Phi-Divergences , 2015 .

[29]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[30]  B. Roorda,et al.  COHERENT ACCEPTABILITY MEASURES IN MULTIPERIOD MODELS , 2005 .

[31]  Alexander Shapiro,et al.  Minimax analysis of stochastic problems , 2002, Optim. Methods Softw..

[32]  Gerd Infanger,et al.  Cut sharing for multistage stochastic linear programs with interstage dependency , 1996, Math. Program..

[33]  Monia Rekik,et al.  Stochastic dual dynamic programming for transportation planning under demand uncertainty , 2013, 2013 International Conference on Advanced Logistics and Transport.

[34]  Birger Mo,et al.  Integrated risk management of hydro power scheduling and contract management , 2001 .

[35]  Andrew B. Philpott,et al.  On the convergence of stochastic dual dynamic programming and related methods , 2008, Oper. Res. Lett..

[36]  Golbon Zakeri,et al.  A deterministic algorithm for solving stochastic minimax dynamic programmes , 2018 .

[37]  Alexandre Street,et al.  Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences , 2014, Eur. J. Oper. Res..

[38]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[39]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[40]  R. Elliott,et al.  Strategic Asset Allocation Under a Fractional Hidden Markov Model , 2014 .

[41]  Stan Uryasev,et al.  Calibrating risk preferences with the generalized capital asset pricing model based on mixed conditional value-at-risk deviation , 2012 .

[42]  Alexander Shapiro,et al.  Risk neutral and risk averse Stochastic Dual Dynamic Programming method , 2013, Eur. J. Oper. Res..

[43]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[44]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[45]  Erlon Cristian Finardi,et al.  On Solving Multistage Stochastic Programs with Coherent Risk Measures , 2013, Oper. Res..

[46]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[47]  M. Sion On general minimax theorems , 1958 .

[48]  Charles Elkan,et al.  Expectation Maximization Algorithm , 2010, Encyclopedia of Machine Learning.

[49]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[50]  Güzin Bayraksan,et al.  Identifying effective scenarios in distributionally robust stochastic programs with total variation distance , 2019, Math. Program..

[51]  Vitor L. de Matos,et al.  Distributionally robust SDDP , 2018, Comput. Manag. Sci..

[52]  David P. Morton,et al.  Distributionally Robust Stochastic Dual Dynamic Programming , 2020, SIAM J. Optim..

[53]  Rogemar S. Mamon,et al.  Hidden Markov Models In Finance , 2007 .

[54]  Cristiano Fernandes,et al.  An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets , 2016, Eur. J. Oper. Res..

[55]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .