TURBULENCE IN THE INTERGALACTIC MEDIUM: SOLENOIDAL AND DILATATIONAL MOTIONS AND THE IMPACT OF NUMERICAL VISCOSITY

We use a suite of cosmological hydrodynamical simulations, run by two fixed grid codes, to investigate the properties of solenoidal and dilatational motions of the intergalactic medium (IGM) and the impact of numerical viscosity on turbulence in an ΛCDM universe. The codes differ only in the spatial difference discretization. We find that (1) The vortical motion grows rapidly since z = 2 and reaches ∼10 km s{sup –1}-90 km s{sup –1} at z = 0. Meanwhile, the small-scale compressive ratio r{sub CS} drops from 0.84 to 0.47, indicating comparable vortical and compressive motions at z = 0. (2) Power spectra of the solenoidal velocity possess two regimes, ∝k {sup –0.89} and ∝k {sup –2.02}, while the total and dilatational velocity follow the scaling k {sup –1.88} and k {sup –2.20}, respectively, in the turbulent range. The IGM turbulence may contain two distinct phases, the supersonic and post-supersonic phases. (3) The non-thermal pressure support, measured by the vortical kinetic energy, is comparable with the thermal pressure for ρ{sub b} ≅ 10-100, or T < 10{sup 5.5} K at z = 0.0. The deviation of the baryon fraction from the cosmic mean shows a preliminary positive correlation with the turbulence pressure support.more » (4) A relatively higher numerical viscosity would dissipate both the compressive and vortical motions of the IGM into thermal energy more effectively, resulting in less developed vorticity, remarkably shortened inertial range, and leading to a non-negligible uncertainty in the thermal history of gas accretion. Shocks in regions outside of clusters are significantly suppressed by numerical viscosity since z = 2, which may directly cause the different levels of turbulence between the two codes.« less

[1]  D. Weinberg,et al.  Baryons in the Warm-Hot Intergalactic Medium , 2000, astro-ph/0007217.

[2]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[3]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[4]  J. Monaghan,et al.  Fundamental differences between SPH and grid methods , 2006, astro-ph/0610051.

[5]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[6]  S. Chandrasekhar The gravitational instability of an infinite homogeneous turbulent medium , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[7]  B. O’Shea,et al.  Cosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration of Cosmic Rays , 2008, 0806.1522.

[8]  A. Lazarian,et al.  Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration , 2007, astro-ph/0703591.

[9]  Kentaroh Suzuki,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF THE FORMATION OF COLD FRONTS IN CLUSTERS OF GALAXIES: EFFECTS OF ANISOTROPIC VISCOSITY , 2013 .

[10]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[11]  Sebastian Kern,et al.  Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas , 2008, 0809.1321.

[12]  Pisa,et al.  Turbulence in the Intergalactic Medium , 2011, 1101.2449.

[13]  V. Springel,et al.  Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters , 2006, astro-ph/0605301.

[14]  James M. Stone,et al.  BUOYANT BUBBLES IN INTRACLUSTER GAS: EFFECTS OF MAGNETIC FIELDS AND ANISOTROPIC VISCOSITY , 2009, 0909.3864.

[15]  C. Gheller,et al.  Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays , 2008, 0808.0609.

[16]  Jeremiah P. Ostriker,et al.  A Cosmological Hydrodynamic Code Based on the Total Variation Diminishing Scheme , 1993 .

[17]  F. Vazza,et al.  Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity , 2005 .

[18]  C. Jones,et al.  XMM—Newton observations of the Perseus cluster — II. Evidence for gas motions in the core , 2004 .

[19]  R. Cen,et al.  Received; Accepted , 1993 .

[20]  THE ORIGIN OF SCALING IN THE GALAXY DISTRIBUTION , 1999 .

[21]  S. Chandrasekhar,et al.  The fluctuations of density in isotropic turbulence , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Andreas Bauer,et al.  Shocking results without shocks: Subsonic turbulence in smoothed particle hydrodynamics and moving-mesh simulations , 2011, 1109.4413.

[23]  L. Fang,et al.  VORTICITY OF INTERGALACTIC MEDIUM VELOCITY FIELD ON LARGE SCALES , 2010, 1001.4127.

[24]  W. Schmidt Structure Formation in Astrophysics: The numerical simulation of turbulence , 2007, 0712.0954.

[25]  A. C. Fabian,et al.  Velocity width measurements of the coolest X-ray emitting material in the cores of clusters, groups and elliptical galaxies , 2012, 1212.1259.

[26]  B. Oppenheimer,et al.  The nature and origin of low‐redshift O vi absorbers , 2008, 0806.2866.

[27]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[28]  The relationship between the optical Hα filaments and the X‐ray emission in the core of the Perseus cluster , 2003, astro-ph/0306039.

[29]  P. Sagaut,et al.  Homogeneous Turbulence Dynamics , 2008 .

[30]  R. Mushotzky,et al.  HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112 , 2011, 1110.4422.

[31]  J Korea,et al.  Cosmological Shock Waves and Their Role in the Large-Scale Structure of the Universe , 2003, astro-ph/0305164.

[32]  L. Fang,et al.  Dynamical effect of the turbulence of the intergalactic medium on the baryon fraction distribution , 2011 .

[33]  An Excursion Set Model of the Cosmic Web: the Abundance of Sheets, Filaments And Halos , 2005, astro-ph/0511365.

[34]  D. Ryu,et al.  A comparison of cosmological codes: properties of thermal gas and shock waves in large-scale structures , 2011 .

[35]  C. S. Crawford,et al.  A deep Chandra observation of the Perseus cluster: shocks and ripples , 2003, astro-ph/0306036.

[36]  The growth of structure in the intergalactic medium , 2001, astro-ph/0102220.

[37]  Technology of China,et al.  A Hybrid Cosmological Hydrodynamic/N-Body Code Based on a Weighted Essentially Nonoscillatory Scheme , 2004 .

[38]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[39]  W. Schmidt,et al.  Turbulence production and turbulent pressure support in the intergalactic medium , 2011, 1102.3352.

[40]  J. Bregman The Search for the Missing Baryons at Low Redshift , 2007, 0706.1787.

[41]  M. Norman,et al.  The Statistics of Supersonic Isothermal Turbulence , 2007, 0704.3851.

[42]  Detecting shock waves in cosmological smoothed particle hydrodynamics simulations , 2006, astro-ph/0603483.

[43]  Fang Li-zhi,et al.  Dynamical Effect of the Turbulence of IGM on the Baryon Fraction Distribution , 2011, 1103.1058.

[44]  D. Ryu,et al.  Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe , 2008, Science.

[45]  R. Cen,et al.  Cosmological Shock Waves in the Large-Scale Structure of the Universe: Nongravitational Effects , 2007, 0704.1521.

[46]  U. Diego,et al.  Moving mesh cosmology: tracing cosmological gas accretion , 2013, 1301.6753.

[47]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[48]  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[49]  G. Williger,et al.  A Study of the Reionization History of Intergalactic Helium with FUSE and the Very Large Telescope , 2003, astro-ph/0312557.

[50]  R. P. Drake,et al.  Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves , 2012, Nature.

[51]  U. Cambridge,et al.  Deep high-resolution X-ray spectra from cool-core clusters , 2009, 0910.3793.

[52]  R. Cen,et al.  Properties of Cosmic Shock Waves in Large-Scale Structure Formation , 2000, astro-ph/0005444.