Crystalline and Fiber Raman Lasers

This chapter describes the state of the art of crystalline and fiber Raman lasers based on the simulated Raman scattering (SRS) effect in crystals and silica-based fibers. It includes historical and theoretical background, analysis of properties of known and newly developed high-efficient SRS crystals, such as LiIO3, Ba(NO3)2, NaNO3, PbNO3, CaCO3, KGW, BaWO4, SrWO4,BaMoO4,SrMoO4, PbWO4, and germanosilicate and phosphosilicate fibers. A large set of data on IR Raman shifters and lasers operating in the CW, nanosecond, and picosecond regimes with low and high repetition rates is given. Some applications of Raman lasers in medicine, ecology, fiber optics, and communications are discussed.

[1]  A. Chraplyvy,et al.  Synchronously pumped D(2) gas-in-glass fiber Raman laser operating at 1.56 microm. , 1984, Optics letters.

[2]  Maxim E. Doroshenko,et al.  Passive Q-switching of 1.3-um Nd-lasers with Nd2+:SrF2 and V3+:YAG crystalline saturable absorbers and application to Raman shifting to the eye-safe region , 1995, Other Conferences.

[3]  N. Bloembergen,et al.  THE STIMULATED RAMAN EFFECT. , 1967 .

[4]  Huimin Liu,et al.  Raman Spectroscopic and Nonlinear Optical Properties of Barium Nitrate Crystal , 1996 .

[5]  K. Hill,et al.  Low-threshold cw Raman laser , 1976 .

[6]  Tasoltan T. Basiev,et al.  Physical, chemical and optical properties of barium nitrate Raman crystal , 1999 .

[7]  Tasoltan T. Basiev,et al.  Stimulated Raman scattering of picosecond pulses in barium nitrate crystals , 1993 .

[8]  O. Medvedkov,et al.  Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48 mum. , 1999, Optics letters.

[9]  Chinlon Lin,et al.  A high‐efficiency tunable cw Raman oscillator , 1977 .

[10]  Helen M. Pask,et al.  Practical 580 nm source based on frequency doubling of an intracavity-Raman-shifted Nd:YAG laser , 1998 .

[11]  Hong Po,et al.  High power neodymium-doped single transverse mode fibre laser , 1993 .

[12]  J. Taylor,et al.  Raman fibre laser operating at 1.24 [micro sign]m , 1998 .

[13]  Daryl Inniss,et al.  Ultrahigh-Power Single-Mode Fiber Lasers from 1.065 to 1.472 µm using Yb-doped Cladding-Pumped and Cascaded Raman Lasers , 1997 .

[14]  High-average-power Raman oscillator employing a shared-resonator configuration , 1977 .

[15]  Tunable Raman fibre-optic laser , 1977 .

[16]  Michael Bass,et al.  Solid-State Lasers , 2003 .

[17]  H. Eichler,et al.  Self-stimulating, transversally diode pumped Nd3+:KGd(WO4)2 Raman laser , 2000 .

[18]  Igory V. Mochalov,et al.  Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd) , 1997 .

[19]  Helena Jelinkova,et al.  Properties of transient and steady-state stimulated Raman scattering in KGd(WO4)2 and BaWO4 tungstate crystals , 2001, SPIE LASE.

[20]  A. M. Prokhorov,et al.  Stimulated Raman scattering of laser radiation in Raman crystals , 1999 .

[21]  V. I. Smirnov,et al.  Spectra of stimulated Raman scattering in silica-fibre waveguides , 1977 .

[22]  Richard C. Powell,et al.  Nonlinear Cavity-Dumped Intracavity Solid-State Raman Laser Transmitters , 1997 .

[23]  Robert W. Hellwarth,et al.  Theory of Stimulated Raman Scattering , 1963 .

[24]  Sergey B. Mirov,et al.  Room-temperature color center lasers , 1988 .

[25]  R. Stolen,et al.  A tunable 1.1‐μm fiber Raman oscillator , 1977 .

[26]  T T Basiev,et al.  Vibrational dynamic of the Raman-active mode in barium nitrate crystal. , 1995, Optics letters.

[27]  H. Po,et al.  Erratum: High power neodymium-doped single transverse mode fibre laser , 1993 .

[28]  Tasoltan T. Basiev,et al.  Conversion of tunable radiation from a laser utilizing an LiF crystal containing F2− color centers by stimulated Raman scattering in Ba(NO3)2 and KGd(WO4)2 crystals , 1987 .

[29]  W. A. Reed,et al.  1.3 µm Cascaded Raman Amplifier in Germanosilicate Fibers , 1994 .

[30]  Eugeni M. Dianov,et al.  1.43-μm fiber laser for medical applications , 2000, Other Conferences.

[31]  Alexander A. Sobol,et al.  Raman spectroscopy of crystals for stimulated Raman scattering , 1999 .

[32]  J. Piper,et al.  Efficient all-solid-state yellow laser source producing 1.2-W average power. , 1999, Optics Letters.

[33]  R. Stolen,et al.  Near-infrared sources in the 1-1.3 μm region by efficient stimulated Raman emission in glass fibers , 1977 .

[34]  Nicolaas Bloembergen,et al.  Theory of Stimulated Brillouin and Raman Scattering , 1965 .

[35]  J. Findeisen,et al.  Efficient Picosecond PbWo/sub 4/ And Two-wavelength KGd(Wo/sub 1/)/sub 2/ Raman Lasers In The IR And Visible , 1999, IEEE Journal of Quantum Electronics.

[36]  R. Powell,et al.  Comparative spontaneous Raman spectroscopy of crystals for Raman lasers. , 1999, Applied optics.

[37]  M. V. Grekov,et al.  Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber. , 2000, Optics letters.

[38]  Tasoltan T. Basiev,et al.  BaWO4 crystal for quasi-cw yellow Raman laser , 2001 .

[39]  Helena Jelínková,et al.  Efficient Raman shifting of picosecond pulses using BaWO4 crystal , 2000 .

[40]  Farhad Hakimi,et al.  DOUBLE CLAD HIGH BRIGHTNESS Nd FIBER LASER PUMPED BY GaAlAs PHASED ARRAY , 1989 .

[41]  T. Basiev,et al.  NONLINEAR OPTICAL PHENOMENA: Stimulated Raman scattering in alkaline-earth tungstate crystals , 2000 .

[42]  E. Ammann High-average-power Raman oscillator employing a shared-resonator configuration , 1977, IEEE Journal of Quantum Electronics.

[43]  Sergey L. Semjonov,et al.  CW high power 1.24 /spl mu/m and 1.48 /spl mu/m Raman lasers based on low loss phosphosilicate fibre , 1997 .

[44]  Theory of Raman gain spectrum transformations , 1999 .

[45]  J. C. White,et al.  Stimulated Raman scattering , 1992 .

[46]  Hak Kyu Lee,et al.  Cascaded Raman fibre laser operating at 1.48 µm , 1999 .

[47]  A. Glass 7.4 - Design considerations for Raman lasers , 1967 .

[48]  J. Piper,et al.  Diode-pumped LiIO/sub 3/ intracavity Raman lasers , 2000, IEEE Journal of Quantum Electronics.

[49]  J. C. Mikkelsen,et al.  The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5 , 1978 .

[50]  Helena Jelinkova,et al.  Comparison of stimulated Raman scattering of picosecond pulses in tungsten crystals , 2000, LASE.

[51]  P. Meystre,et al.  Advances in Laser Physics , 2001 .

[52]  Alexander A. Sobol,et al.  Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers , 2000 .

[53]  Mitsunobu Miyagi,et al.  Efficient picosecond Raman lasers on BaWO4 and KGd(WO4)2 tungstate crystals emitting in 1.15 to 1.18um spectral region , 2002, SPIE LASE.

[54]  G. Placzek,et al.  Rayleigh-Streuung und Raman-Effekt , 1934 .

[55]  R. Loudon,et al.  The Raman effect in crystals , 1964 .

[56]  Tasoltan T. Basiev,et al.  Stimulated Raman scattering in barium nitrate crystal in the external optical cavity , 1995, Other Conferences.

[57]  I. A. Bufetov,et al.  CW highly efficient 1.24-μm Raman laser based on low-loss phosphosilicate fiber , 2000, Other Conferences.

[58]  H.G. Limberger,et al.  CW highly efficient 1.24 /spl mu/m Raman laser based on low-loss phosphosilicate fiber , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[59]  D. Jaque,et al.  Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated raman scattering-active crystals. , 1999, Applied optics.

[60]  R. Powell,et al.  Generation of 1.5-mu m radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals. , 1995, Optics letters.

[61]  G. Eckhardt,et al.  Selection of Raman laser materials , 1966 .

[62]  T. Basiev CONFERENCES AND SYMPOSIA: Spectroscopy of new SRS-active crystals and solid-state SRS lasers , 1999 .

[63]  T. Omatsu,et al.  Thermal lensing measurements in an intracavity LiIO3 Raman laser , 2000 .

[64]  Yehuda B. Band,et al.  Intracavity Raman lasers , 1989 .

[65]  Richard L. Collins,et al.  35-watt cw single-mode ytterbium fiber laser at 1.1 m , 1997 .

[66]  Eugeni M. Dianov,et al.  Fabrication and investigation of single-mode highly phosphorus-doped fibers for Raman lasers , 2000, Other Conferences.

[67]  E. O. Ammann,et al.  0. 9-W Raman oscillator , 1977 .

[68]  E. O. Schulz-Dubois,et al.  Laser Handbook , 1972 .

[69]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[70]  T. Basiev,et al.  Barium tungstate Raman laser - a new source for sodium star experiments , 2000 .

[71]  James C. Barnes,et al.  High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals , 2000 .

[72]  Chinlon Lin,et al.  A tunable multiple Stokes cw fiber Raman oscillator , 1977 .

[73]  R. Stolen,et al.  Raman Oscillation in Glass Optical Waveguide , 1972 .

[74]  A. Lagatsky,et al.  Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO(4))(2) laser. , 2000, Optics letters.

[75]  Sergey B. Mirov,et al.  Room temperature tunable color center lasers , 1994 .

[76]  W. A. Reed,et al.  High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers , 1995 .