Schwarz iterations for the efficient solution of screen problems with boundary elements

This paper investigates two domain decomposition algorithms for the numerical solution of boundary integral equations of the first kind. The schemes are based on theh-type boundary element Galerkin method to which the multiplicative and the additive Schwarz methods are applied. As for twodimensional problems, the rates of convergence of both methods are shown to be independent of the number of unknowns. Numerical results for standard model problems arising from Laplaces' equation with Dirichlet or Neumann boundary conditions in both two and three dimensions are discussed. A multidomain decomposition strategy is indicated by means of a screen problem in three dimensions, so as to obtain satisfactory experimental convergence rates.ZusammenfassungEs werden zwei Gebietszerlegungsalgorithmen für die numerische Behandlung von Randintegralgleichungen der ersten Art untersucht. Die Verfahren beruhen auf derh-Version der Galerkinmethode für Randelemente, auf die die multiplikative und die additive Schwarz-Methode angewandt werden. Für zweidimensionale Probleme wird gezeigt, daß die Konvergenzraten beider Methoden unabhängig von der Anzahl der Unbekannten sind. Numerische Resultate für einfache zweidimensionale und dreidimensionale Modellprobleme, die von der Laplace-Gleichung mit Dirichlet oder Neumann-Randbedingungen stammen, werden diskutiert. Eine Gebietszerlegungsstrategie für den Fall vieler Teilgebiete wird anhand eines dreidimensionalen Schirmproblems demonstriert.

[1]  Xuejun Zhang,et al.  Multilevel Schwarz methods , 1992 .

[2]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[3]  L. Rodino Linear Partial Differential Operators in Gevrey Spaces , 1993 .

[4]  E. P. Stephan,et al.  The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .

[5]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[6]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[7]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[8]  A. Greenbaum,et al.  Parallelizing preconditioned conjugate gradient algorithms , 1989 .

[9]  Ernst P. Stephan,et al.  On the convergence of the multigrid method for a hypersingular integral equation of the first kind , 1990 .

[10]  O. Widlund Some Schwarz Methods for Symmetric and Nonsymmetric Elliptic Problems , 1991 .

[11]  Yu. A. Kuznetsov Multigrid domain decomposition methods for elliptic problems , 1989 .

[12]  W. Hackbusch Iterative Lösung großer schwachbesetzter Gleichungssysteme , 1991 .

[13]  J. Nédélec,et al.  Numerical solution of an exterior Neumann problem using a double layer potential , 1978 .

[14]  Ernst P. Stephan,et al.  Boundary integral equations for screen problems in IR3 , 1987 .

[15]  J.,et al.  EFFICIENT PRECONDITIONING FOR THE p-VERSION FINITE ELEMENT METHOD IN TWO DIMENSIONS , .

[16]  Ernst P. Stephan,et al.  Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem , 1984, Computing.

[17]  J. Planchard,et al.  Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .

[18]  Reinhold Schneider,et al.  Error analysis of a boundary element collocation method for a screen problem in , 1992 .

[19]  Ernst P. Stephan,et al.  Multigrid solvers and preconditioners for first kind integral equations , 1992 .

[20]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[21]  Ernst P. Stephan,et al.  An improved boundary element method for the charge density of a thin electrified plate in ℝ3 , 1990 .

[22]  Carsten Carstensen,et al.  A posteriori error estimates for boundary element methods , 1995 .