Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

[1]  G. Repizo,et al.  α-Acetolactate synthase of Lactococcus lactis contributes to pH homeostasis in acid stress conditions. , 2014, International journal of food microbiology.

[2]  M. Gilmore,et al.  Enterococcus Diversity, Origins in Nature, and Gut Colonization , 2014 .

[3]  V. Blancato,et al.  Expression of the Agmatine Deiminase Pathway in Enterococcus faecalis Is Activated by the AguR Regulator and Repressed by CcpA and PTSMan Systems , 2013, PloS one.

[4]  C. Magni,et al.  Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334 , 2013, Applied and Environmental Microbiology.

[5]  V. Blancato,et al.  Biochemical and Genetic Characterization of the Enterococcus faecalis Oxaloacetate Decarboxylase Complex , 2013, Applied and Environmental Microbiology.

[6]  V. Blancato,et al.  Detection and identification of tyrDC+ enterococcal strains from pasteurized commercial cheeses , 2012, Food Science and Biotechnology.

[7]  Cesar A. Arias,et al.  The rise of the Enterococcus: beyond vancomycin resistance , 2012, Nature Reviews Microbiology.

[8]  H. Abriouel,et al.  Enterococci as probiotics and their implications in food safety. , 2011, International journal of food microbiology.

[9]  J. Deutscher,et al.  CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites , 2011, BMC Microbiology.

[10]  L. Vuyst,et al.  New insights into the citrate metabolism of Enterococcus faecium FAIR-E 198 and its possible impact on the production of fermented dairy products , 2011 .

[11]  G. Repizo,et al.  Disruption of the alsSD operon of Enterococcus faecalis impairs growth on pyruvate at low pH. , 2011, Microbiology.

[12]  V. Blancato,et al.  Identification of malic and soluble oxaloacetate decarboxylase enzymes in Enterococcus faecalis , 2011, The FEBS journal.

[13]  I. Nes,et al.  Class IIa bacteriocin resistance in Enterococcus faecalis V583: The mannose PTS operon mediates global transcriptional responses , 2010, BMC Microbiology.

[14]  W. Ziebuhr,et al.  Characterization of the Transposase Encoded by IS256, the Prototype of a Major Family of Bacterial Insertion Sequence Elements , 2010, Journal of bacteriology.

[15]  V. Blancato,et al.  Transcriptional Regulation of the Citrate Gene Cluster of Enterococcus faecalis Involves the GntR Family Transcriptional Activator CitO , 2008, Journal of bacteriology.

[16]  P. Serror,et al.  Safety assessment of dairy microorganisms: the Enterococcus genus. , 2008, International journal of food microbiology.

[17]  P. López,et al.  Activation of the Diacetyl/Acetoin Pathway in Lactococcus lactis subsp. lactis bv. diacetylactis CRL264 by Acidic Growth , 2008, Applied and Environmental Microbiology.

[18]  S. González,et al.  Citrate metabolism by Enterococcus faecium and Enterococcus durans isolated from goat's and ewe's milk: influence of glucose and lactose. , 2007, Canadian journal of microbiology.

[19]  C. Francke,et al.  How Phosphotransferase System-Related Protein Phosphorylation Regulates Carbohydrate Metabolism in Bacteria , 2006, Microbiology and Molecular Biology Reviews.

[20]  V. Blancato,et al.  Functional characterization and Me2+ ion specificity of a Ca2+–citrate transporter from Enterococcus faecalis , 2006, The FEBS journal.

[21]  L De Vuyst,et al.  The role and application of enterococci in food and health. , 2006, International journal of food microbiology.

[22]  L. De Vuyst,et al.  Cometabolism of Citrate and Glucose by Enterococcus faecium FAIR-E 198 in the Absence of Cellular Growth , 2006, Applied and Environmental Microbiology.

[23]  J. Lolkema,et al.  The 2-Hydroxycarboxylate Transporter Family: Physiology, Structure, and Mechanism , 2005, Microbiology and Molecular Biology Reviews.

[24]  D. de Mendoza,et al.  CitI, a Transcription Factor Involved in Regulation of Citrate Metabolism in Lactic Acid Bacteria , 2005, Journal of bacteriology.

[25]  M. Schumacher,et al.  Structural Basis for Allosteric Control of the Transcription Regulator CcpA by the Phosphoprotein HPr-Ser46-P , 2004, Cell.

[26]  D. de Mendoza,et al.  Acid-Inducible Transcription of the Operon Encoding the Citrate Lyase Complex of Lactococcus lactis Biovar diacetylactis CRL264 , 2004, Journal of bacteriology.

[27]  C. Magni,et al.  Characterization of an oxaloacetate decarboxylase that belongs to the malic enzyme family , 2004, FEBS letters.

[28]  M. Rea,et al.  Glucose prevents citrate metabolism by enterococci. , 2003, International journal of food microbiology.

[29]  G. Giraffa Functionality of enterococci in dairy products. , 2003, International journal of food microbiology.

[30]  L. De Vuyst,et al.  Growth and energy generation by Enterococcus faecium FAIR-E 198 during citrate metabolism. , 2003, International journal of food microbiology.

[31]  L. Vuyst,et al.  Applicability of a bacteriocin-producing Enterococcus faecium as a co-culture in Cheddar cheese manufacture. , 2003, International journal of food microbiology.

[32]  E. Tsakalidou,et al.  Citrate Metabolism by Enterococcus faecalis FAIR-E 229 , 2001, Applied and Environmental Microbiology.

[33]  Y. Auffray,et al.  Characterization of the ccpA Gene ofEnterococcus faecalis: Identification of Starvation-Inducible Proteins Regulated by CcpA , 2000, Journal of bacteriology.

[34]  D. de Mendoza,et al.  Transcriptional Control of the Citrate-InduciblecitMCDEFGRP Operon, Encoding Genes Involved in Citrate Fermentation in Leuconostoc paramesenteroides , 2000, Journal of bacteriology.

[35]  C. Diviès,et al.  Genetic Organization of the citCDEFLocus and Identification of mae and clyR Genes from Leuconostoc mesenteroides , 1999, Journal of bacteriology.

[36]  D. de Mendoza,et al.  Cloning and molecular characterization of the citrate utilization citMCDEFGRP cluster of Leuconostoc paramesenteroides. , 1999, FEMS microbiology letters.

[37]  D. de Mendoza,et al.  Mechanism of Citrate Metabolism inLactococcus lactis: Resistance against Lactate Toxicity at Low pH , 1999, Journal of bacteriology.

[38]  G. Chambliss,et al.  Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. , 1997, Nucleic acids research.

[39]  D. de Mendoza,et al.  Characterization of an insertion sequence-like element identified in plasmid pCIT264 from Lactococcus lactis subsp. lactis biovar diacetylactis. , 1996, FEMS microbiology letters.

[40]  P. López,et al.  Citrate transport in Lactococcus lactis biovar diacetylactis: Expression of the plasmid‐borne citrate permease P , 1994 .

[41]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[42]  R. Facklam,et al.  Comparison of physiologic tests used to identify non-beta-hemolytic aerococci, enterococci, and streptococci , 1987, Journal of clinical microbiology.

[43]  L. Mckay,et al.  Improved Medium for Detection of Citrate-Fermenting Streptococcus lactis subsp. diacetylactis , 1980, Applied and environmental microbiology.