Highly flexible MoS2 thin-film transistors with ion gel dielectrics.

Molybdenum disulfide (MoS(2)) thin-film transistors were fabricated with ion gel gate dielectrics. These thin-film transistors exhibited excellent band transport with a low threshold voltage (<1 V), high mobility (12.5 cm(2)/(V·s)) and a high on/off current ratio (10(5)). Furthermore, the MoS(2) transistors exhibited remarkably high mechanical flexibility, and no degradation in the electrical characteristics was observed when they were significantly bent to a curvature radius of 0.75 mm. The superior electrical performance and excellent pliability of MoS(2) films make them suitable for use in large-area flexible electronics.

[1]  Kazuhito Tsukagoshi,et al.  High-performance transparent flexible transistors using carbon nanotube films , 2006 .

[2]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[3]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[4]  T. Lodge,et al.  High‐Capacitance Ion Gel Gate Dielectrics with Faster Polarization Response Times for Organic Thin Film Transistors , 2008 .

[5]  Chung‐Chih Wu,et al.  High-Performance Flexible a-IGZO TFTs Adopting Stacked Electrodes and Transparent Polyimide-Based Nanocomposite Substrates , 2011, IEEE Transactions on Electron Devices.

[6]  Yugeng Wen,et al.  Recent Progress in n‐Channel Organic Thin‐Film Transistors , 2010, Advanced materials.

[7]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Bo Zhang,et al.  Materials for Printable, Transparent, and Low‐Voltage Transistors , 2011 .

[9]  Wei Zhang,et al.  Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. , 2010, ACS nano.

[10]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[11]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[12]  Charles M. Lieber,et al.  Synthesis of monolithic graphene-graphite integrated electronics. , 2012, Nature materials.

[13]  S. Maruyama,et al.  Deformable transparent all-carbon-nanotube transistors , 2012 .

[14]  Jiyoul Lee,et al.  Ion gel gated polymer thin-film transistors. , 2007, Journal of the American Chemical Society.

[15]  Jong-Hyun Ahn,et al.  High-performance flexible graphene field effect transistors with ion gel gate dielectrics. , 2010, Nano letters.

[16]  Timothy P. Lodge,et al.  Ion Gel-Gated Polymer Thin-Film Transistors: Operating Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability , 2009 .

[17]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[18]  Wei Zhang,et al.  Printed Sub‐2 V Gel‐Electrolyte‐Gated Polymer Transistors and Circuits , 2010 .

[19]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[20]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[21]  T. Someya,et al.  Flexible organic transistors and circuits with extreme bending stability. , 2010, Nature materials.

[22]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[23]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[24]  Masayoshi Watanabe,et al.  Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. , 2005, Journal of the American Chemical Society.

[25]  J. Rogers,et al.  Stretchable graphene transistors with printed dielectrics and gate electrodes. , 2011, Nano letters.

[26]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[27]  Masashi Kawasaki,et al.  Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. , 2010, Journal of the American Chemical Society.