Interactive multiobjective optimization with the Pareto memetic algorithm

[1]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[2]  Constantin Zopounidis,et al.  A multicriteria classification approach based on pairwise comparisons , 2004, Eur. J. Oper. Res..

[3]  Andrzej Jaszkiewicz,et al.  A Comparative Study of Multiple-Objective Metaheuristics on the Bi-Objective Set Covering Problem and the Pareto Memetic Algorithm , 2004, Ann. Oper. Res..

[4]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[5]  Andrzej Jaszkiewicz,et al.  Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem , 2003, IEEE Trans. Evol. Comput..

[6]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[7]  A. Jaszkiewicz Genetic local search for multi-objective combinatorial optimization , 2002, Eur. J. Oper. Res..

[8]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[9]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[10]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[11]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[12]  H. Ishibuchi,et al.  Multi-objective genetic algorithm and its applications to flowshop scheduling , 1996 .

[13]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[14]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.