Hyperfine-phonon spin relaxation in a single-electron GaAs quantum dot

Understanding and control of the spin relaxation time T1 is among the key challenges for spin-based qubits. A larger T1 is generally favored, setting the fundamental upper limit to the qubit coherence and spin readout fidelity. In GaAs quantum dots at low temperatures and high in-plane magnetic fields B, the spin relaxation relies on phonon emission and spin–orbit coupling. The characteristic dependence T1 ∝ B−5 and pronounced B-field anisotropy were already confirmed experimentally. However, it has also been predicted 15 years ago that at low enough fields, the spin–orbit interaction is replaced by the coupling to the nuclear spins, where the relaxation becomes isotropic, and the scaling changes to T1 ∝ B−3. Here, we establish these predictions experimentally, by measuring T1 over an unprecedented range of magnetic fields—made possible by lower temperature—and report a maximum T1 = 57 ± 15 s at the lowest fields, setting a record electron spin lifetime in a nanostructure.The application of spin based qubits requests understanding and control of spin relaxation time T1 which remains challenging. Here the authors experimentally demonstrate the spin relaxation mechanism via hyper fine interaction and long spin-relaxation time T1 ~ 57 s for a single electron spin in GaAs quantum dot.

[1]  Y. B. Kalyoncu,et al.  On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK , 2017, 1708.09491.

[2]  D. Zumbühl,et al.  Magnetic cooling for microkelvin nanoelectronics on a cryofree platform. , 2017, The Review of scientific instruments.

[3]  Hyperfine-mediated transitions between a Zeeman split doublet in GaAs quantum dots: The role of the internal field , 2002, cond-mat/0202237.

[4]  A. Yacoby,et al.  Charge noise spectroscopy using coherent exchange oscillations in a singlet-triplet qubit. , 2012, Physical review letters.

[5]  A. Oiwa,et al.  Signatures of Hyperfine, Spin-Orbit, and Decoherence Effects in a Pauli Spin Blockade. , 2016, Physical review letters.

[6]  A. Gossard,et al.  Spin-orbit coupling, antilocalization, and parallel magnetic fields in quantum dots. , 2002, Physical review letters.

[7]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[8]  L. Hollenberg,et al.  Atomically engineered electron spin lifetimes of 30 s in silicon , 2017, Science Advances.

[9]  Spin relaxation and anticrossing in quantum dots : Rashba versus Dresselhaus spin-orbit coupling , 2004, cond-mat/0409614.

[10]  P. San-Jose,et al.  Geometrical spin dephasing in quantum dots. , 2006, Physical review letters.

[11]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[12]  D. Awschalom,et al.  Stretchable persistent spin helices in GaAs quantum wells , 2017, 1702.05190.

[13]  J. Pekola,et al.  Metallic Coulomb blockade thermometry down to 10 mK and below. , 2011, The Review of scientific instruments.

[14]  Fabio Baruffa,et al.  Theory of anisotropic exchange in laterally coupled quantum dots. , 2009, Physical review letters.

[15]  D. Loss,et al.  Optimal geometry of lateral GaAs and Si/SiGe quantum dots for electrical control of spin qubits , 2016, 1601.05881.

[16]  A. Khaetskii,et al.  Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots , 2000, cond-mat/0003513.

[17]  D. Loss,et al.  Prospects for Spin-Based Quantum Computing in Quantum Dots , 2012, 1204.5917.

[18]  Liuqi Yu,et al.  Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields. , 2018, Physical review letters.

[19]  L. Vandersypen,et al.  Single-spin CCD. , 2015, Nature nanotechnology.

[20]  G. Guo,et al.  Detection and measurement of spin-dependent dynamics in random telegraph signals. , 2013, Physical Review Letters.

[21]  Jr.,et al.  Low-Temperature Saturation of the Dephasing Time and Effects of Microwave Radiation on Open Quantum Dots , 1999, cond-mat/9904274.

[22]  V. Goldman,et al.  Absence of compressible edge channel rings in quantum antidots. , 2001, Physical review letters.

[23]  A. Micolich,et al.  Piezoelectric rotator for studying quantum effects in semiconductor nanostructures at high magnetic fields and low temperatures. , 2010, The Review of scientific instruments.

[24]  Theory of phonon-induced spin relaxation in laterally coupled quantum dots. , 2005, Physical review letters.

[25]  A. Gossard,et al.  GaAs Quantum Dot Thermometry Using Direct Transport and Charge Sensing , 2014, 1401.2330.

[26]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[27]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[28]  Daniel Loss,et al.  Phonon-Induced Decay of the Electron Spin in Quantum Dots , 2004 .

[29]  D. Loss,et al.  Electric-dipole-induced spin resonance in quantum dots , 2006, cond-mat/0601674.

[30]  Xuedong Hu,et al.  Electron Spin Relaxation due to Charge Noise , 2013, 1308.0352.

[31]  M. N. Makhonin,et al.  Nuclear spin effects in semiconductor quantum dots. , 2013, Nature materials.

[32]  M. Kastner,et al.  Electrical control of spin relaxation in a quantum dot. , 2007, Physical review letters.

[33]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[34]  Takashi Nakajima,et al.  Robust Single-Shot Spin Measurement with 99.5% Fidelity in a Quantum Dot Array. , 2017, Physical review letters.

[35]  D. Mailly,et al.  Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime , 2009, 0910.2683.

[36]  Electron spin relaxation by nuclei in semiconductor quantum dots , 2002, cond-mat/0202271.

[37]  Observation of the two-channel Kondo effect , 2006, Nature.

[38]  Orbital and spin relaxation in single and coupled quantum dots , 2006, cond-mat/0604633.

[39]  B. Schuh Algebraic solution of a non-trivial oscillator problem , 1985 .

[40]  A. Gossard,et al.  Intrinsic Metastabilities in the Charge Configuration of a Double Quantum Dot. , 2015, Physical review letters.

[41]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[42]  L. Vandersypen,et al.  Spin-relaxation anisotropy in a GaAs quantum dot. , 2014, Physical review letters.

[43]  P Stano,et al.  Quantum Dephasing in a Gated GaAs Triple Quantum Dot due to Nonergodic Noise. , 2015, Physical review letters.

[44]  A. Clerk,et al.  Quantum interference and phonon-mediated back-action in lateral quantum-dot circuits , 2012, Nature Physics.

[45]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[46]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[47]  Energy-dependent tunneling in a quantum dot. , 2006, Physical review letters.

[48]  Ivan M Khaymovich,et al.  Tunnel-Junction Thermometry Down to Millikelvin Temperatures , 2015, 1504.03841.

[49]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[50]  A. Gossard,et al.  Silver-epoxy microwave filters and thermalizers for millikelvin experiments , 2014, 1403.6205.

[51]  A. Gossard,et al.  Cotunneling spectroscopy in few-electron quantum dots. , 2004, Physical Review Letters.

[52]  D. Zumbühl,et al.  Method for cooling nanostructures to microkelvin temperatures. , 2010, The Review of scientific instruments.

[53]  V. Maisi,et al.  Anisotropy and Suppression of Spin-Orbit Interaction in a GaAs Double Quantum Dot. , 2016, Physical review letters.