A robust method for processing scanning probe microscopy images and determining nanoobject position and dimensions

Processing of scanning probe microscopy (SPM) images is essential to explore nanoscale phenomena. Image processing and pattern recognition techniques are developed to improve the accuracy and consistency of nanoobject and surface characterization. We present a robust and versatile method to process SPM images and reproducibly estimate nanoobject position and dimensions. This method is using dedicated fits based on the least‐square method and the matrix operations. The corresponding algorithms have been implemented in the FabViewer portable application. We illustrate how these algorithms permit not only to correct SPM images but also to precisely determine the position and dimensions of nanocrystals and adatoms on surface. A robustness test is successfully performed using distorted SPM images.

[1]  F. Silly,et al.  Bimodal growth of Au on SrTiO3(001). , 2006, Physical review letters.

[2]  Holy,et al.  Self-organized growth of three- dimensional quantum-Dot crystals with fcc-like stacking and a tunable lattice constant , 1998, Science.

[3]  J. Frenken,et al.  Automated detection of particles, clusters and islands in scanning probe microscopy images , 2001 .

[4]  Adrien-Marie Legendre,et al.  Nouvelles méthodes pour la détermination des orbites des comètes , 1970 .

[5]  Williams,et al.  Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes , 1998, Science.

[6]  H. Fujisawa,et al.  Structural control of self-assembled PbTiO3 nanoislands fabricated by metalorganic chemical vapor deposition , 2005 .

[7]  K. Kern,et al.  Long-range adsorbate interactions mediated by a two-dimensional electron gas , 2002 .

[8]  P. Rudolf,et al.  NaCl multi-layer islands grown on Au ( 111 )-( 22 x root 3 ) probed by scanning tunneling microscopy , 2010 .

[9]  P. Weiss,et al.  Interaction of CO molecules with surface state electrons on Ag(111) , 2005 .

[10]  H. Güntherodt,et al.  Scanning Tunneling Microscopy I , 1992 .

[11]  W. Schneider,et al.  Reading the ripples of confined surface-state electrons: Profiles of constant integrated local density of states , 2003 .

[12]  F. Silly,et al.  Formation of single-domain anatase TiO2(001)‐(1×4) islands on SrTiO3(001) after thermal annealing , 2004 .

[13]  Roland Wiesendanger Scanning Probe Microscopy , 1998 .

[14]  F. Silly,et al.  Temperature-dependent stability of supported five-fold twinned copper nanocrystals. , 2009, ACS nano.

[15]  F. Silly,et al.  Encapsulated Pd nanocrystals supported by nanoline-structured SrTiO3(001). , 2005, The journal of physical chemistry. B.

[16]  L. Marks Experimental studies of small particle structures , 1994 .

[17]  T. Cren,et al.  The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures , 2003, Nature materials.

[18]  Claude R. Henry,et al.  Morphology of supported nanoparticles , 2005 .

[19]  W. Schneider,et al.  Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. , 2004, Physical review letters.

[20]  C. J. Chen,et al.  Introduction to Scanning Tunneling Microscopy , 1993 .

[21]  K. Kern,et al.  Controlled Deposition of Size-Selected Silver Nanoclusters , 1996, Science.

[22]  P. Hyldgaard,et al.  Substrate mediated long-range oscillatory interaction between adatoms: Cu /Cu(111). , 2000, Physical review letters.

[23]  D. Bonnell Scanning tunneling microscopy and spectroscopy: Theory, techniques, and applications , 1993 .

[24]  Hans-Joachim Freund,et al.  Palladium Nanocrystals on Al 2 O 3 : Structure and Adhesion Energy , 1999 .

[25]  A. Wee,et al.  Terrace width dependence of cobalt silicide nucleation on Si(111)-(7×7) , 2006 .

[26]  W. Schneider,et al.  Coverage-dependent self-organization: from individual adatoms to adatom superlattices , 2004 .

[27]  D. Bonnell Scanning probe microscopy and spectroscopy : theory, techniques, and applications , 2001 .

[28]  P. Rudolf,et al.  NaCl multi-layer islands grown on Au(111)-() probed by scanning tunneling microscopy , 2008, Nanotechnology.

[29]  R. Wiesendanger Scanning Probe Microscopy and Spectroscopy: Contents , 1994 .

[30]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[31]  F. Silly,et al.  Growth of Ag icosahedral nanocrystals on a SrTiO3(001) support , 2005 .

[32]  P. Weiss,et al.  Long-range electronic interactions at a high temperature: bromine adatom islands on Cu(111). , 2007, Physical review letters.

[33]  Wenbin Wang Scanning Tunneling Microscopy , 2009 .

[34]  N. Motta,et al.  GeSi intermixing in Ge nanostructures on Si(111): An XAFS versus STM study , 2007 .

[35]  A robust method for quantifying surface grain size , 2008 .

[36]  Fabien Silly,et al.  Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001). , 2005, Physical review letters.

[37]  A. P. Gunning,et al.  Atomic Force Microscopy for Biologists , 1999 .

[38]  P. Weiss,et al.  Analyzing the Motion of Benzene on Au{111}: Single Molecule Statistics from Scanning Probe Images , 2007 .

[39]  T. Yokoyama,et al.  Quantitative analysis of long-range interactions between adsorbed dipolar molecules on Cu(111). , 2007, Physical review letters.