Characterization of EEG - A comparative study

The Electroencephalogram (EEG) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer cannot directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. Chaotic measures like correlation dimension (CD), largest Lyapunov exponent (LLE), Hurst exponent (H) and entropy are used to characterize the signal. Results indicate that these nonlinear measures are good discriminators of normal and epileptic EEG signals. These measures distinguish epileptic EEG and alcoholic from normal EEG with an accuracy of more than 90%. The dynamical behavior is less random for alcoholic and epileptic compared to normal. This indicates less of information processing in the brain due to the hyper-synchronization of the EEG. Hence, the application of nonlinear time series analysis to EEG signals offers insight into the dynamical nature and variability of the brain signals. As a pre-analysis step, the EEG data is tested for nonlinearity using surrogate data analysis and the results exhibited a significant difference in the correlation dimension measure of the actual data and the surrogate data.

[1]  M Rey,et al.  Apport des mathématiques non-linéaires (théorie du chaos) à l'analyse de l'EEG , 1997, Neurophysiologie Clinique/Clinical Neurophysiology.

[2]  F. Takens Detecting strange attractors in turbulence , 1981 .

[3]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[4]  A. Babloyantz,et al.  Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle , 1985 .

[5]  H Sattel,et al.  Parameters of EEG dimensional complexity in Alzheimer's disease. , 1995, Electroencephalography and clinical neurophysiology.

[6]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[7]  Cornelis J. Stam,et al.  Non-linear analysis of the electroencephalogram in Creutzfeldt-Jakob disease , 1997, Biological Cybernetics.

[8]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[9]  J. Wackermann,et al.  Beyond mapping: estimating complexity of multichannel EEG recordings. , 1996, Acta neurobiologiae experimentalis.

[10]  M Molnár,et al.  Dimensional complexity of the EEG in subcortical stroke--a case study. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[11]  E Callaway,et al.  Coupling between Cortical Potentials from Different Areas , 1974, Science.

[12]  I. Rezek,et al.  Stochastic complexity measures for physiological signal analysis , 1998, IEEE Transactions on Biomedical Engineering.

[13]  J. Röschke,et al.  Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. , 1996, Electroencephalography and clinical neurophysiology.

[14]  C. J. Stam,et al.  Nonlinear EEG changes in postanoxic encephalopathy , 1999 .

[15]  Hongkui Jing,et al.  Topographic analysis of dimension estimates of EEG and filtered rhythms in epileptic patients with complex partial seizures , 2000, Biological Cybernetics.

[16]  Erik Olofsen,et al.  Entropies of the EEG: The effects of general anaesthesia , 2001 .

[17]  Leonidas D. Iasemidis,et al.  ■ REVIEW : Chaos Theory and Epilepsy , 1996 .

[18]  K. Lehnertz,et al.  The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy , 2001, Epilepsy Research.

[19]  G N Kenny,et al.  The performance of electroencephalogram bispectral index and auditory evoked potential index to predict loss of consciousness during propofol infusion. , 1999, Anesthesia and analgesia.

[20]  秦 浩起,et al.  Characterization of Strange Attractor (カオスとその周辺(基研長期研究会報告)) , 1987 .

[21]  Márk Molnár,et al.  Reduced dimensional complexity of the EEG in a case of subcortical stroke , 1997 .

[22]  P. Grassberger,et al.  A robust method for detecting interdependences: application to intracranially recorded EEG , 1999, chao-dyn/9907013.

[23]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[24]  W. Pritchard,et al.  Measuring chaos in the brain: a tutorial review of nonlinear dynamical EEG analysis. , 1992, The International journal of neuroscience.

[25]  L D Iasemidis,et al.  Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. , 1997, Electroencephalography and clinical neurophysiology.

[26]  J. Martinerie,et al.  Epileptic seizures can be anticipated by non-linear analysis , 1998, Nature Medicine.

[27]  Das Applicability of Lyapunov Exponent in EEG data analysis , 2022 .

[28]  C. Elger,et al.  Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. , 1995, Electroencephalography and clinical neurophysiology.

[29]  Leonidas D. Iasemidis,et al.  Chaos Theory and Epilepsy , 1996 .

[30]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[31]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[32]  P Guillemant,et al.  [Contribution of non-linear mathematics (chaos theory) to EEG analysis]. , 1997, Neurophysiologie clinique = Clinical neurophysiology.

[33]  M Rey,et al.  Article originalApport des mathématiques non-linéaires (théorie du chaos) à l'analyse de l'EEGContribution of nonlinear mathematics at EEG analysis , 1997 .

[34]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[35]  J. E. Skinner,et al.  Chaos and physiology: deterministic chaos in excitable cell assemblies. , 1994, Physiological reviews.

[36]  C. Stam,et al.  Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls , 1999, Clinical Neurophysiology.

[37]  H. Begleiter,et al.  Event related potentials during object recognition tasks , 1995, Brain Research Bulletin.

[38]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .