Unconventional detection methods for microfluidic devices

The direction of modern analytical techniques is to push for lower detection limits, improved selectivity and sensitivity, faster analysis time, higher throughput, and more inexpensive analysis systems with ever‐decreasing sample volumes. These very ambitious goals are exacerbated by the need to reduce the overall size of the device and the instrumentation – the quest for functional micrototal analysis systems epitomizes this. Microfluidic devices fabricated in glass, and more recently, in a variety of polymers, brings us a step closer to being able to achieve these stringent goals and to realize the economical fabrication of sophisticated instrumentation. However, this places a significant burden on the detection systems associated with microchip‐based analysis systems. There is a need for a universal detector that can efficiently detect sample analytes in real time and with minimal sample manipulation steps, such as lengthy labeling protocols. This review highlights the advances in uncommon or less frequently used detection methods associated with microfluidic devices. As a result, the three most common methods – LIF, electrochemical, and mass spectrometric techniques – are omitted in order to focus on the more esoteric detection methods reported in the literature over the last 2 years.

[1]  Frédéric Ginot,et al.  Opto-electronic DNA chip: high performance chip reading with an all-electric interface. , 2005, Biosensors & bioelectronics.

[2]  Takehiko Kitamori,et al.  Chemical processing on microchips for analysis, synthesis, and bioassay , 2003, Electrophoresis.

[3]  Andrew J. deMello,et al.  Thin-film organic photodiodes as integrated detectors for microscale chemiluminescence assays , 2005 .

[4]  Jörg P Kutter,et al.  Pure‐silica optical waveguides, fiber couplers, and high‐aspect ratio submicrometer channels for electrokinetic separation devices , 2004, Electrophoresis.

[5]  Duncan Graham,et al.  The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. , 2004, Chemical communications.

[6]  Manabu Tokeshi,et al.  Peer Reviewed: Thermal Lens Microscopy and Microchip Chemistry , 2004 .

[7]  Hizuru Nakajima,et al.  Detection method for microchip separations , 2004, Analytical and bioanalytical chemistry.

[8]  D. Markov,et al.  Noninvasive fluid flow measurements in microfluidic channels with backscatter interferometry , 2004, Electrophoresis.

[9]  Katsumi Uchiyama,et al.  Integration of a flow-type chemiluminescence detector on a glass electrophoresis chip. , 2004, Talanta.

[10]  Jeffrey Hopwood,et al.  Ultrahigh frequency microplasmas from 1 pascal to 1 atmosphere , 2004 .

[11]  Mattias Goksör,et al.  A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. , 2005, Lab on a chip.

[12]  Hidenori Nagai,et al.  Simultaneous determination of nitrate and nitrite in biological fluids by capillary electrophoresis and preliminary study on their determination by microchip capillary electrophoresis. , 2004, Journal of chromatography. A.

[13]  N F de Rooij,et al.  Planar microcoil-based microfluidic NMR probes. , 2003, Journal of magnetic resonance.

[14]  Lei Sun,et al.  Multiobjective Optimization of Simulated Moving Bed by Tissue P System * * Supported by the National , 2007 .

[15]  S. Kulmala,et al.  Current status of modern analytical luminescence methods , 2003 .

[16]  D. J. Harrison,et al.  Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Capillary electrophoresis on a chip , 1992 .

[17]  R. E. Oosterbroek,et al.  On-chip hydrodynamic chromatography separation and detection of nanoparticles and biomolecules. , 2003, Analytical chemistry.

[18]  M. Vellekoop,et al.  Mid-IR synchrotron radiation for molecular specific detection in microchip-based analysis systems , 2004, Analytical and bioanalytical chemistry.

[19]  Klavs F. Jensen,et al.  Silicon Micromixers with Infrared Detection for Studies of Liquid-Phase Reactions , 2005 .

[20]  M. Schwarz,et al.  Affinity capillary electrophoresis on microchips. , 2005, Journal of chromatography. A.

[21]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[22]  D. J. Harrison,et al.  Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices , 1996 .

[23]  Steven M Cramer,et al.  On-chip electrochromatography using sol-gel immobilized stationary phase with UV absorbance detection. , 2004, Journal of chromatography. A.

[24]  Elizabeth Guihen,et al.  Rapid separation of antimicrobial metabolites by microchip electrophoresis with UV linear imaging detection. , 2005, Journal of chromatography. A.

[25]  Dong Yonggui,et al.  Micro-array detection system for gene expression products based on surface plasmon resonance imaging , 2003 .

[26]  Scott D. Collins,et al.  A Micromachined Double-Tuned NMR Microprobe , 2003 .

[27]  S. Haswell,et al.  Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer , 2003, Electrophoresis.

[28]  Takehiko Kitamori,et al.  Tunable thermal lens spectrometry utilizing microchannel-assisted thermal lens spectrometry. , 2005, Lab on a chip.

[29]  M. Schwarz,et al.  Recent developments in detection methods for microfabricated analytical devices. , 2001, Lab on a chip.

[30]  D. J. Harrison,et al.  Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. , 2004, Analytical chemistry.

[31]  Elisa Michelini,et al.  Bio- and chemiluminescence imaging in analytical chemistry , 2005 .

[32]  N. Bings,et al.  Microstrip microwave induced plasma on a chip for atomic emission spectral analysis , 2005, IEEE Transactions on Plasma Science.

[33]  Lihua Zhang,et al.  Microchip electrophoresis-based separation of DNA. , 2003, Journal of pharmaceutical and biomedical analysis.

[34]  Richard F Winkle,et al.  A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection. , 2005, In Analysis.

[35]  Takehiko Kitamori,et al.  Thermal lens micro optical systems. , 2005, Analytical chemistry.

[36]  M. McBride Environmental Chemistry of Soils , 1994 .

[37]  Masaaki Yamada,et al.  Capillary electrophoresis microchip coupled with on-line chemiluminescence detection , 2004 .

[38]  Thierry Livache,et al.  Polypyrrole based DNA hybridization assays: study of label free detection processes versus fluorescence on microchips. , 2003, Journal of pharmaceutical and biomedical analysis.

[39]  Sylwester Bargiel,et al.  Nanoliter detectors for flow systems , 2004 .

[40]  A. Roda,et al.  Biotechnological applications of bioluminescence and chemiluminescence. , 2004, Trends in biotechnology.

[41]  Andrew J. deMello,et al.  Continuous real-time bubble monitoring in microchannels using refractive index detection , 2004 .

[42]  Jeffrey Hopwood,et al.  Langmuir probe diagnostics of a microfabricated inductively coupled plasma on a chip , 2003 .

[43]  James P. Landers,et al.  The performance of a microchip-based fiber optic detection technique for the determination of Ca2+ ions in urine , 2005 .

[44]  A P M Kentgens,et al.  Towards nuclear magnetic resonance micro-spectroscopy and micro-imaging. , 2004, The Analyst.

[45]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[46]  Weidong Cao,et al.  Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector. , 2003, Analytical chemistry.

[47]  Eun Kyu Lee,et al.  Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study. , 2005, Lab on a chip.

[48]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[49]  Takehiko Kitamori,et al.  Optimization of an interface chip for coupling capillary electrophoresis with thermal lens microscopic detection. , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[50]  Takehiko Kitamori,et al.  Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network. , 2004, Lab on a chip.

[51]  Zhao-Lun Fang,et al.  Composite poly(dimethylsiloxane)/glass microfluidic system with an immobilized enzymatic particle-bed reactor and sequential sample injection for chemiluminescence determinations , 2004 .

[52]  James Hickman,et al.  Total protein determinations by particle beam/hollow cathode optical emission spectroscopy. , 2003, Analytical chemistry.

[53]  Erkang Wang,et al.  Simultaneous electrochemical and electrochemiluminescence detection for microchip and conventional capillary electrophoresis , 2005, Electrophoresis.

[54]  Takehiko Kitamori,et al.  Development of a microchip-based bioassay system using cultured cells. , 2005, Analytical chemistry.

[55]  Kay Niemax,et al.  Microplasmas for analytical spectrometry , 2003 .

[56]  Susumu Honda,et al.  High‐speed electrophoretic analysis of 1‐phenyl‐3‐methyl‐5‐pyrazolone derivatives of monosaccharides on a quartz microchip with whole‐channel UV detection , 2003, Electrophoresis.

[57]  Michael J Sepaniak,et al.  Metal-polymer nanocomposites for integrated microfluidic separations and surface enhanced Raman spectroscopic detection. , 2004, Journal of separation science.

[58]  S Büttgenbach,et al.  Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift. , 2004, Lab on a chip.

[59]  Stellan Hjertén,et al.  Hybrid microdevice electrophoresis of peptides, proteins, DNA, viruses, and bacteria in various separation media, using UV‐detection , 2003, Electrophoresis.

[60]  Stanley Brown,et al.  A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. , 2003, Talanta.

[61]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[62]  N. Dovichi,et al.  Capillary electrophoresis for the analysis of biopolymers. , 2000, Analytical chemistry.

[63]  Adam T Woolley,et al.  Fabrication of calcium fluoride capillary electrophoresis microdevices for on-chip infrared detection. , 2004, Journal of chromatography. A.

[64]  Akihiro Arai,et al.  Performance of electrokinetic supercharging for high‐sensitivity detection of DNA fragments in chip gel electrophoresis , 2004, Electrophoresis.

[65]  Mikhail A. Proskurnin,et al.  Comparison of the Possibilities of Thermal-Lens Detection in Capillaries and Microchips , 2004 .

[66]  Christopher Pearson,et al.  A single chip multi-channel surface plasmon resonance imaging system , 2003 .

[67]  Aaron R. Wheeler,et al.  Poly(dimethylsiloxane) microfluidic flow cells for surface plasmon resonance spectroscopy , 2004 .

[68]  E. Wang,et al.  Analytical applications of the electrochemiluminescence of tris (2,2'-bipyridyl) ruthenium and its derivatives , 2004 .

[69]  Paul Leonard,et al.  Novel assay format permitting the prolonged use of regeneration-based sensor chip technology. , 2005, Journal of immunological methods.

[70]  Tatsuya Tobita,et al.  Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber , 2004 .

[71]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .

[72]  M. J. Navas,et al.  Thermal Lens Spectrometry as Analytical Tool , 2003 .

[73]  Risto Kostiainen,et al.  Introduction to micro-analytical systems: bioanalytical and pharmaceutical applications. , 2003, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[74]  Koji Otsuka,et al.  Rapid Enantioseparation of 1-Aminoindan by Microchip Electrophoresis with Linear-Imaging UV Detection , 2005, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[75]  Joseph Georges,et al.  Pulsed-Laser Crossed-Beam Thermal Lens Spectrometry for Detection in a Microchannel: Influence of the Size of the Excitation Beam Waist , 2004, Applied spectroscopy.

[76]  Larry J. Kricka,et al.  Clinical applications of chemiluminescence , 2003 .

[77]  Greg E Collins,et al.  Analysis of inorganic and small organic ions with the capillary electrophoresis microchip , 2003, Electrophoresis.

[78]  Feng Xu,et al.  Single-step quantitation of DNA in microchip electrophoresis with linear imaging UV detection and fluorescence detection through comigration with a digest. , 2004, Journal of chromatography. A.

[79]  André Briguet,et al.  Micro-spectrometer for NMR: analysis of small quantities in vitro , 2004 .

[80]  Kazuma Mawatari,et al.  Portable thermal lens spectrometer with focusing system. , 2005, Analytical chemistry.

[81]  N. Danielson,et al.  Analytical Applications: Flow Injection, Liquid Chromatography, and Capillary Electrophoresis , 2004 .

[82]  A. Manz,et al.  A double plasma gas chromatography injector and detector. , 2004, Lab on a chip.

[83]  Richard N Zare,et al.  Surface plasmon resonance detection for capillary electrophoresis separations. , 2003, Analytical chemistry.

[84]  Jeffrey Hopwood,et al.  Microfabricated inductively coupled plasma-on-a-chip for molecular SO2 detection: a comparison between global model and optical emission spectrometry , 2003 .

[85]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[86]  G. M. Greenway,et al.  Analysis of Toxic Metals by Micro Total Analytical Systems (μTAS) with Chemiluminescence , 2005 .

[87]  Z. Zhang,et al.  A Microchip with Air Sampling and Chemiluminescence Detection for Analyzing Iron in Nature Water and in Whole Blood , 2004 .

[88]  Erkang Wang,et al.  Electrochemiluminescence detection with integrated indium tin oxide electrode on electrophoretic microchip for direct bioanalysis of lincomycin in the urine. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[89]  Ding Xiang,et al.  A surface plasmon resonance imaging interferometry for protein micro-array detection , 2005 .

[90]  H. B. Lim,et al.  A radiofrequency plasma in a polydimethylsiloxane (PDMS) microchip , 2005 .

[91]  Jonathan W Aylott,et al.  A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding within a 3D architecture. , 2003, The Analyst.

[92]  Frank Kohler,et al.  High‐speed chiral separations on a microchip with UV detection , 2003, Electrophoresis.

[93]  Elisa Michelini,et al.  Peer Reviewed: Analytical Bioluminescence and Chemiluminescence , 2003 .

[94]  H Nakanishi,et al.  Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems , 2001, Electrophoresis.

[95]  Hiroaki Nakanishi,et al.  Condition optimization, reliability evaluation of SiO2-SiO2 HF bonding and its application for UV detection micro flow cell , 2000 .

[96]  Erkang Wang,et al.  Electrogenerated chemiluminescence on microfluidic chips , 2005, Analytical and bioanalytical chemistry.

[97]  A. van den Berg,et al.  Measuring reaction kinetics in a lab-on-a-chip by microcoil NMR. , 2005, Lab on a chip.

[98]  R. Synovec,et al.  Diffusion coefficient measurement in a microfluidic analyzer using dual-beam microscale-refractive index gradient detection. Application to on-chip molecular size determination. , 2003, Journal of chromatography. A.

[99]  K. Mogensen,et al.  Recent developments in detection for microfluidic systems , 2004, Electrophoresis.

[100]  K. Tsukagoshi,et al.  Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers. , 2005, Analytical chemistry.