Non-perturbative theory of dispersion interactions

Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here, we present a full non-perturbative theory. In addition, we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.

[1]  I. Brevik,et al.  Nonperturbative theory for the dispersion self-energy of atoms , 2014, 1411.0277.

[2]  B. Ninham,et al.  A continuum solvent model of ion-ion interactions in water. , 2014, Physical chemistry chemical physics : PCCP.

[3]  B. Ninham,et al.  Ion interactions with the air-water interface using a continuum solvent model. , 2014, The journal of physical chemistry. B.

[4]  I. Brevik,et al.  Finite-size–dependent dispersion potentials between atoms and ions dissolved in water , 2014, 1406.2149.

[5]  J. Camalich,et al.  Octet-baryon axial-vector charges and SU(3)-breaking effects in the semileptonic hyperon decays , 2014, 1405.5456.

[6]  B. Ninham,et al.  A continuum solvent model of the partial molar volumes and entropies of ionic solvation. , 2014, The journal of physical chemistry. B.

[7]  B. Ninham,et al.  A continuum solvent model of the multipolar dispersion solvation energy. , 2013, The journal of physical chemistry. B.

[8]  S. Buhmann Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir–Polder and van der Waals Forces , 2013 .

[9]  A. Thakkar,et al.  New relationships connecting the dipole polarizability, radius, and second ionization potential for atoms. , 2012, The journal of physical chemistry. A.

[10]  Stefan Yoshi Buhmann,et al.  Erratum: Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces [Phys. Rev. A 82, 010901(R) (2010)] , 2010 .

[11]  Kate Clements,et al.  Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces , 2010, 1005.2485.

[12]  B. Ninham,et al.  Molecular Forces and Self Assembly: In Colloid, Nano Sciences and Biology , 2010 .

[13]  S. Scheel,et al.  Atomic multipole relaxation rates near surfaces , 2009, 0901.3084.

[14]  S. Scheel,et al.  Thermal Casimir versus Casimir-Polder forces: equilibrium and nonequilibrium forces. , 2008, Physical review letters.

[15]  B. Ninham,et al.  Resonance interaction between one excited and one ground state atom , 2003 .

[16]  K. Milton The Casimir Effect , 2001 .

[17]  K. Milton The Casimir Effect: Physical Manifestations of Zero-Point Energy , 1999, hep-th/9901011.

[18]  B. Ninham,et al.  Chapter 3 – Molecular Forces and Self-Assembly , 1997 .

[19]  Gerald D. Mahan,et al.  Local density theory of polarizability , 1990 .

[20]  Barry Honig,et al.  Reevaluation of the Born model of ion hydration , 1985 .

[21]  D. D. Richardson Dispersion contribution of two-atom interaction energy: Multipole interactions , 1975 .

[22]  B. Ninham,et al.  Theory of dispersion interactions between macroscopic bodies , 1975 .

[23]  J. Mahanty A semi-classical theory of the dispersion energy of atoms and molecules , 1974 .

[24]  B. Ninham,et al.  Exact Energy of Interaction Between Nonpolar Molecules Represented as Dipoles , 1972 .

[25]  G. Weiss,et al.  On the macroscopic theory of temperature-dependent van der Waals forces , 1970 .

[26]  A. Parsegian,et al.  Energy of an Ion crossing a Low Dielectric Membrane: Solutions to Four Relevant Electrostatic Problems , 1969, Nature.

[27]  A. McLachlan Resonance transfer of molecular excitation energy , 1964 .

[28]  Kenneth S. Pitzer,et al.  The Free Energy of Hydration of Gaseous Ions, and the Absolute Potential of the Normal Calomel Electrode , 1939 .