L ∞ (L 2)-error estimates for the DGFEM applied to convection–diffusion problems on nonconforming meshes

Abstract This paper is devoted to the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonlinear nonstationary convection–diffusion Dirichlet problem. General nonconforming simplicial meshes are considered and the SIPG scheme is used. Under the assumption that the exact solution is sufficiently regular an L ∞ (L 2)-optimal error estimate is derived. The theoretical results are illustrated by numerical experiments.

[1]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[2]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers , 2007 .

[3]  E. Süli,et al.  Discontinuous hp-finite element methods for advection-diffusion problems , 2000 .

[4]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[5]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[8]  Rolf Rannacher,et al.  Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems , 2002, J. Num. Math..

[9]  Vít Dolejší,et al.  An optimal L∞(L2)-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection–diffusion problem , 2007 .

[10]  Miloslav Feistauer,et al.  Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems , 2004, J. Num. Math..

[11]  Vít Dolejší,et al.  Error Estimates of the Discontinuous Galerkin Method for Nonlinear Nonstationary Convection-Diffusion Problems , 2005 .

[12]  Miloslav Feistauer,et al.  Effect of numerical integration in the DGFEM for nonlinear convection‐diffusion problems , 2007 .

[13]  M. Feistauer A Remark to the DGFEM for Nonlinear Convection-Diffusion Problems Applied on Nonconforming Meshes , 2008 .

[14]  Vít Dolejší,et al.  Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .

[15]  Miloslav Feistauer,et al.  Space-time discontinuos Galerkin method for solving nonstationary convection-diffusion-reaction problems , 2007 .

[16]  M. Feistauer,et al.  Analysis of the discontinuous Galerkin method for nonlinear convection-diffusion problems , 2005 .

[17]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[18]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[19]  V. Dolejší,et al.  Semi-Implicit Interior Penalty Discontinuous Galerkin Methods for Viscous Compressible Flows , 2008 .

[20]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[21]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[22]  M. Sleutel,et al.  Development and Testing of the Labor Support Scale , 2002, Journal of Nursing Measurement.

[23]  Vít Dolejší Higher Order Semi-Implicit Discontinuous Galerkin Finite Element Schemes for Nonlinear Convection-Diffusion Problems , 2006 .

[24]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[25]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[26]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..