The Effect of Ionic Composition on Acoustic Phonon Speeds in Hybrid Perovskites from Brillouin Spectroscopy and Density Functional Theory

Hybrid organic-inorganic perovskites (HOIPs) have recently emerged as highly promising solution-processable materials for photovoltaic (PV) and other optoelectronic devices. HOIPs represent a broad family of materials with properties highly tuneable by the ions that make up the perovskite structure as well as their multiple combinations. Interestingly, recent high-efficiency PV devices using HOIPs with substantially improved long-term stability have used combinations of different ionic compositions. The structural dynamics of these systems are unique for semiconducting materials and are currently argued to be central to HOIPs stability and charge-transport properties. Here, we studied the impact of ionic composition on phonon speeds of HOIPs from Brillouin spectroscopy experiments and density functional theory calculations for FAPbBr$_3$, MAPbBr$_3$, MAPbCl$_3$, and the mixed halide MAPbBr$_{1.25}$Cl$_{1.75}$. Our results show that the acoustic phonon speeds can be strongly modified by ionic composition, which we explain by analysing the lead-halide sublattice in detail. The vibrational properties of HOIPs are therefore tuneable by using targeted ionic compositions in the perovskite structure. This tuning can be rationalized with non-trivial effects, for example, considering the influence of the shape and dipole moment of organic cations. This has an important implication to further improvements in the stability and charge-transport properties of these systems.

[1]  Nripan Mathews,et al.  Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells , 2018 .

[2]  M. Izadifard,et al.  DFT Study of Mechanical Properties and Stability of Cubic Methylammonium Lead Halide Perovskites (CH3NH3PbX3, X = I, Br, Cl) , 2017 .

[3]  S. Parker,et al.  Molecular orientational melting within a lead-halide octahedron framework: The order-disorder transition in CH3NH3PbBr3 , 2017, 1711.07002.

[4]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[5]  Furkan H. Isikgor,et al.  Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. , 2017, ChemSusChem.

[6]  Nakita K. Noel,et al.  Consolidation of the optoelectronic properties of CH3NH3PbBr3 perovskite single crystals , 2017, Nature Communications.

[7]  P. Kim,et al.  Phonon Speed, Not Scattering, Differentiates Thermal Transport in Lead Halide Perovskites. , 2017, Nano letters.

[8]  Dieter Neher,et al.  Approaching the fill factor Shockley–Queisser limit in stable, dopant-free triple cation perovskite solar cells , 2017 .

[9]  Alexander N. Beecher,et al.  Interplay between organic cations and inorganic framework and incommensurability in hybrid lead-halide perovskite CH3NH3PbBr3 , 2017, 1705.10691.

[10]  M. Kanatzidis,et al.  Electron–acoustic phonon coupling in single crystal CH3NH3PbI3 perovskites revealed by coherent acoustic phonons , 2017, Nature Communications.

[11]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[12]  Chen Hu,et al.  Profiling the organic cation-dependent degradation of organolead halide perovskite solar cells , 2017 .

[13]  L. Kronik,et al.  Local Polar Fluctuations in Lead Halide Perovskite Crystals. , 2016, Physical review letters.

[14]  Nakita K. Noel,et al.  Mechanism for rapid growth of organic–inorganic halide perovskite crystals , 2016, Nature Communications.

[15]  B. Rufflé,et al.  Elastic Constants, Optical Phonons, and Molecular Relaxations in the High Temperature Plastic Phase of the CH3NH3PbBr3 Hybrid Perovskite. , 2016, The journal of physical chemistry letters.

[16]  A. McGaughey,et al.  Lattice dynamics and the nature of structural transitions in organolead halide perovskites , 2016, 1608.05411.

[17]  L. Kronik,et al.  Optical phonons in methylammonium lead halide perovskites and implications for charge transport , 2016, 1607.08541.

[18]  Brookhaven National Laboratory,et al.  Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite , 2016, 1606.09267.

[19]  Radha Shivaramaiah,et al.  Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites , 2016, Proceedings of the National Academy of Sciences.

[20]  Carl Paterson,et al.  Assessing corneal biomechanics with Brillouin spectro-microscopy. , 2016, Faraday discussions.

[21]  Leeor Kronik,et al.  High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide. , 2016, Nano letters.

[22]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[23]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[24]  Dorian Krause,et al.  JURECA: General-purpose supercomputer at Jülich Supercomputing Centre , 2016 .

[25]  P. Rinke,et al.  Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction , 2016, 1602.08935.

[26]  Leeor Kronik,et al.  Hybrid Organic–Inorganic Perovskites on the Move , 2016, Accounts of chemical research.

[27]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[28]  A. Walsh,et al.  What Is Moving in Hybrid Halide Perovskite Solar Cells? , 2016, Accounts of chemical research.

[29]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[30]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[31]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[32]  Jinsong Huang,et al.  Electric‐Field‐Driven Reversible Conversion Between Methylammonium Lead Triiodide Perovskites and Lead Iodide at Elevated Temperatures , 2016 .

[33]  Fan Zheng,et al.  Material Innovation in Advancing Organometal Halide Perovskite Functionality. , 2015, The journal of physical chemistry letters.

[34]  J. W. Taylor,et al.  From soft harmonic phonons to fast relaxational dynamics in CH 3 NH 3 PbBr 3 , 2015, 1510.01834.

[35]  T. White,et al.  Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation , 2015 .

[36]  Sidney R. Cohen,et al.  Mechanical properties of APbX_3 (A = Cs or CH_3NH_3; X= I or Br) perovskite single crystals , 2015, 1508.04071.

[37]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[38]  Kai Zhu,et al.  A facile solvothermal growth of single crystal mixed halide perovskite CH3NH3Pb(Br(1-x)Cl(x))3. , 2015, Chemical communications.

[39]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[40]  K. Butler,et al.  Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 , 2015 .

[41]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[42]  Leeor Kronik,et al.  Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations. , 2014, The journal of physical chemistry letters.

[43]  Jing Feng Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers , 2014 .

[44]  Mohammad Khaja Nazeeruddin,et al.  Perovskite as light harvester: a game changer in photovoltaics. , 2014, Angewandte Chemie.

[45]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[46]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[47]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[48]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[49]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[50]  T. Bučko,et al.  Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids , 2013 .

[51]  Vamsee K Voora,et al.  An Assessment of the vdW-TS Method for Extended Systems. , 2012, Journal of chemical theory and computation.

[52]  Kenneth E. Evans,et al.  ElAM: A computer program for the analysis and representation of anisotropic elastic properties , 2010, Comput. Phys. Commun..

[53]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[54]  I. Swainson,et al.  Study of Local Structure in Selected Organic–Inorganic Perovskites in the Pm3̅m Phase , 2008 .

[55]  Jürgen Hafner,et al.  Geometry optimization of periodic systems using internal coordinates. , 2005, The Journal of chemical physics.

[56]  Astronomy,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[57]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[58]  D. Mitzi,et al.  PRESSURE-INDUCED PHASE TRANSITIONS AND TEMPLATING EFFECT IN THREE-DIMENSIONAL ORGANIC-INORGANIC HYBRID PEROVSKITES , 2003 .

[59]  A. Alex,et al.  Ultrasonic measurement of the elastic constants of selected nonlinear optical /semiorganic crystals with orthorhombic symmetry , 2001 .

[60]  A Kokalj,et al.  XCrySDen--a new program for displaying crystalline structures and electron densities. , 1999, Journal of molecular graphics & modelling.

[61]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[62]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[63]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[64]  R. Vacher,et al.  Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants , 1972 .