From microbes to numbers: extracting meaningful quantities from images

Light microscopy offers a unique window into the life and works of microbes and their interactions with hosts. Mere visualization of images, however, does not provide the quantitative information needed to reliably and accurately characterize phenotypes or test computational models of cellular processes, and is unfeasible in high‐throughput screens. Algorithms that automatically extract biologically meaningful quantitative data from images are therefore an increasingly essential complement to the microscopes themselves. This paper reviews some of the computational methods developed to detect, segment and track cells, molecules or viruses, with an emphasis on their underlying assumptions, limitations, and the importance of validation.

[1]  Wiro J. Niessen,et al.  Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy , 2010, IEEE Transactions on Medical Imaging.

[2]  R. Parthasarathy Rapid, accurate particle tracking by calculation of radial symmetry centers , 2012, Nature Methods.

[3]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[4]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[5]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[6]  Gaudenz Danuser,et al.  Linking data to models: data regression , 2006, Nature Reviews Molecular Cell Biology.

[7]  Frederic Fol Leymarie,et al.  Tracking Deformable Objects in the Plane Using an Active Contour Model , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  R. Durbin,et al.  Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes , 2010, Nature.

[9]  Erik Meijering,et al.  Methods for cell and particle tracking. , 2012, Methods in enzymology.

[10]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  P. Koumoutsakos,et al.  Feature point tracking and trajectory analysis for video imaging in cell biology. , 2005, Journal of structural biology.

[12]  Karl Rohr,et al.  Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences , 2009, Medical Image Anal..

[13]  Jean-Christophe Olivo-Marin,et al.  3-D Active Meshes: Fast Discrete Deformable Models for Cell Tracking in 3-D Time-Lapse Microscopy , 2011, IEEE Transactions on Image Processing.

[14]  B. S. Manjunath,et al.  Biological imaging software tools , 2012, Nature Methods.

[15]  David Pastor-Escuredo,et al.  $3D+t$ Morphological Processing: Applications to Embryogenesis Image Analysis , 2012, IEEE Transactions on Image Processing.

[16]  Laurent D. Cohen,et al.  Single quantum dot tracking based on perceptual Grouping using minimal paths in a spatiotemporal volume , 2005, IEEE Transactions on Image Processing.

[17]  O. Sliusarenko,et al.  High‐throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio‐temporal dynamics , 2011, Molecular microbiology.

[18]  A. Sergé,et al.  Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes , 2008, Nature Methods.

[19]  Christophe Zimmer,et al.  Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces , 2005, IEEE Transactions on Image Processing.

[20]  Tian Shen,et al.  Segmentation and tracking of cytoskeletal filaments using open active contours , 2010, Cytoskeleton.

[21]  Anne E Carpenter,et al.  Annotated high-throughput microscopy image sets for validation , 2012, Nature Methods.

[22]  S. Ram,et al.  Localization accuracy in single-molecule microscopy. , 2004, Biophysical journal.

[23]  Yangsheng Xu,et al.  Segmentation and Tracking , 2011 .

[24]  J. Olivo-Marin,et al.  Multiple Particle Tracking in 3-D+ Microscopy: Method and Application to the Tracking of Endocytosed Quantum Dots , 2006 .

[25]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Yi Yang,et al.  Multiple dense particle tracking in fluorescence microscopy images based on multidimensional assignment. , 2011, Journal of structural biology.

[27]  Satwik Rajaram,et al.  SimuCell: a flexible framework for creating synthetic microscopy images , 2012, Nature Methods.

[28]  Patrick Bouthemy,et al.  A simulation and estimation framework for intracellular dynamics and trafficking in video-microscopy and fluorescence imagery , 2008 .

[29]  Scott T. Acton,et al.  Tracking leukocytes in vivo with shape and size constrained active contours , 2002, IEEE Transactions on Medical Imaging.

[30]  Bo Zhang,et al.  Automated super-resolution detection of fluorescent rods in 2D , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[31]  Takeo Kanade,et al.  Cell population tracking and lineage construction with spatiotemporal context , 2008, Medical Image Anal..

[32]  M. West,et al.  Image segmentation and dynamic lineage analysis in single‐cell fluorescence microscopy , 2009, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[33]  E M Judd,et al.  Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[35]  Michael Unser,et al.  Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics , 2005, IEEE Transactions on Image Processing.

[36]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[37]  Vannary Meas-Yedid,et al.  Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: a tool for cell-based drug testing , 2002, IEEE Transactions on Medical Imaging.

[38]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[39]  Wiro J. Niessen,et al.  Multiple object tracking in molecular bioimaging by Rao-Blackwellized marginal particle filtering , 2008, Medical Image Anal..

[40]  Andrew G. Dempster,et al.  Analysis of infected blood cell images using morphological operators , 2002, Image Vis. Comput..

[41]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[42]  Carlos Ortiz-de-Solorzano,et al.  Segmentation of Touching Cell Nuclei Using a Two-Stage Graph Cut Model , 2009, SCIA.

[43]  Jean-Christophe Olivo-Marin,et al.  High-resolution statistical mapping reveals gene territories in live yeast , 2008, Nature Methods.

[44]  Wiro J. Niessen,et al.  Automated lineage tree reconstruction from Caenorhabditis elegans image data using particle filtering based cell tracking , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[45]  X. Zhuang,et al.  Virus trafficking – learning from single-virus tracking , 2007, Nature Reviews Microbiology.

[46]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[47]  W. E. Moerner,et al.  Microscopy beyond the diffraction limit using actively controlled single molecules , 2012, Journal of microscopy.

[48]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[49]  J. Käs,et al.  Apparent subdiffusion inherent to single particle tracking. , 2002, Biophysical journal.

[50]  Jens Rittscher,et al.  Spatio-temporal cell cycle phase analysis using level sets and fast marching methods , 2009, Medical Image Anal..