Scaffold hopping: An approach to improve the existing pharmacological profile of NCEs

[1]  Hongyu Zhao,et al.  Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. , 2007, Drug discovery today.

[2]  Simon K. Kearsley,et al.  An alternative method for the alignment of molecular structures: Maximizing electrostatic and steric overlap , 1990 .

[3]  J. Bajorath,et al.  Recent Advances in Scaffold Hopping. , 2017, Journal of medicinal chemistry.

[4]  B. S. Sekhon,et al.  Scaffold hopping in drug discovery , 2012 .

[5]  Ajay,et al.  Kinase patent space visualization using chemical replacements. , 2006, Journal of medicinal chemistry.

[6]  M. Stahl,et al.  Scaffold hopping. , 2004, Drug discovery today. Technologies.

[7]  Gisbert Schneider,et al.  Scaffold‐Hopping: How Far Can You Jump? , 2006 .

[8]  G. Bemis,et al.  BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. , 2004, Journal of medicinal chemistry.

[9]  Matthias Rarey,et al.  Similarity searching in large combinatorial chemistry spaces , 2001, J. Comput. Aided Mol. Des..

[10]  Dušanka Janežič,et al.  BoBER: web interface to the base of bioisosterically exchangeable replacements , 2017, Journal of Cheminformatics.

[11]  Petra Schneider,et al.  De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks , 2000, J. Comput. Aided Mol. Des..

[12]  D. Fattori,et al.  Molecular recognition: the fragment approach in lead generation. , 2004, Drug discovery today.

[13]  Peter Ertl,et al.  Cheminformatics Analysis of Organic Substituents: Identification of the Most Common Substituents, Calculation of Substituent Properties, and Automatic Identification of Drug-like Bioisosteric Groups , 2003, J. Chem. Inf. Comput. Sci..

[14]  Gavin Harper,et al.  Drug rings database with web interface. A tool for identifying alternative chemical rings in lead discovery programs. , 2003, Journal of medicinal chemistry.

[15]  Philip M. Dean,et al.  Evaluation of a method for controlling molecular scaffold diversity in de novo ligand design , 1997, J. Comput. Aided Mol. Des..

[16]  Andrew C. Good,et al.  Three‐Dimensional Structure Database Searches , 2007 .

[17]  Gerhard Klebe,et al.  Methodological developments and strategies for a fast flexible superposition of drug-size molecules , 1999, J. Comput. Aided Mol. Des..

[18]  Garret A. FitzGerald,et al.  COX-2 and beyond: approaches to prostaglandin inhibition in human disease , 2003, Nature Reviews Drug Discovery.

[19]  Gerhard Klebe,et al.  What Can We Learn from Molecular Recognition in Protein–Ligand Complexes for the Design of New Drugs? , 1996 .

[20]  Thomas Lengauer,et al.  Novel technologies for virtual screening. , 2004, Drug discovery today.

[21]  Teruki Honma,et al.  Recent advances in de novo design strategy for practical lead identification , 2003, Medicinal research reviews.

[22]  Thierry Langer,et al.  Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. , 2003, Current opinion in drug discovery & development.

[23]  John H. Van Drie,et al.  Strategies for the determination of pharmacophoric 3D database queries , 1997, J. Comput. Aided Mol. Des..

[24]  Chris M. W. Ho,et al.  SPLICE: A program to assemble partial query solutions from three-dimensional database searches into novel ligands , 1993, J. Comput. Aided Mol. Des..

[25]  Nathan Brown,et al.  On scaffolds and hopping in medicinal chemistry. , 2006, Mini reviews in medicinal chemistry.

[26]  Matthias Rarey,et al.  Feature trees: A new molecular similarity measure based on tree matching , 1998, J. Comput. Aided Mol. Des..

[27]  Philip M. Dean,et al.  A validation study on the practical use of automated de novo design , 2002, J. Comput. Aided Mol. Des..