Visual tracking via context-aware local sparse appearance model

Abstract Most existing local sparse trackers are prone to drifting away as they do not make use of discriminative information of local patches. In this paper, we propose an effective context-aware local sparse appearance model to alleviate the drift problem caused by background clutter and occlusions. First, considering that different local patches should have different impacts on the likelihood computation, we present a novel Impact Allocation Strategy (IAS) with integration of the spatial-temporal context. Varying positive impact factors are adaptively assigned to different local patches based on their ability distinguishing the spatial context, which provides discriminative information to prevent the tracker from drifting. Furthermore, we exploit temporal context to introduce some historical information for more accurate locating. Second, we present a new patch-based dictionary update method being able to update each patch independently with the validation of effectiveness. On the one hand, we introduce sparsity concentration index to check whether the local patch to be updated is a valid local patch from the target object. On the other hand, spatial context is further employed to eliminate the effect of the background. Experimental results show the superiority and competitiveness of the proposed method on the benchmark data set compared to other state-of-the-art algorithms.

[1]  Shengping Zhang,et al.  Sparse coding based visual tracking: Review and experimental comparison , 2013, Pattern Recognit..

[2]  Zhenyu He,et al.  Robust Object Tracking via Key Patch Sparse Representation , 2017, IEEE Transactions on Cybernetics.

[3]  Zhiyong Li,et al.  Robust Object Tracking via Local Sparse Appearance Model , 2018, IEEE Transactions on Image Processing.

[4]  Zhibin Hong,et al.  Tracking via Robust Multi-task Multi-view Joint Sparse Representation , 2013, 2013 IEEE International Conference on Computer Vision.

[5]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[6]  Tianzhu Zhang,et al.  Temporal Restricted Visual Tracking Via Reverse-Low-Rank Sparse Learning , 2017, IEEE Transactions on Cybernetics.

[7]  Changsheng Xu,et al.  Deep Relative Tracking , 2017, IEEE Transactions on Image Processing.

[8]  Huchuan Lu,et al.  Visual tracking with structured patch-based model , 2017, Image Vis. Comput..

[9]  Hua Hong-tu,et al.  Robust visual tracking based on product sparse coding , 2015 .

[10]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[11]  Shan Gao,et al.  Robust visual tracking based on product sparse coding , 2015, Pattern Recognit. Lett..

[12]  Ping Feng,et al.  Sparse representation combined with context information for visual tracking , 2017, Neurocomputing.

[13]  Wenjuan Yang,et al.  Random-filtering based sparse representation parallel face recognition , 2018, Multimedia Tools and Applications.

[14]  Huchuan Lu,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Online Object Tracking with Sparse Prototypes , 2022 .

[15]  Gongjian Wen,et al.  Learning adaptively windowed correlation filters for robust tracking , 2018, J. Vis. Commun. Image Represent..

[16]  Xiaohui Yuan,et al.  Inverse Sparse Group Lasso Model for Robust Object Tracking , 2017, IEEE Transactions on Multimedia.

[17]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[19]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[21]  Dacheng Tao,et al.  Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Song Gao,et al.  Robust object tracking based on adaptive templates matching via the fusion of multiple features , 2017, J. Vis. Commun. Image Represent..

[23]  Changsheng Xu,et al.  Partial Occlusion Handling for Visual Tracking via Robust Part Matching , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Huchuan Lu,et al.  Robust Object Tracking via Sparse Collaborative Appearance Model , 2014, IEEE Transactions on Image Processing.

[25]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Ling Shao,et al.  Discriminative Tracking Using Tensor Pooling , 2016, IEEE Transactions on Cybernetics.

[27]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Changsheng Xu,et al.  Robust Visual Tracking via Exclusive Context Modeling , 2016, IEEE Transactions on Cybernetics.

[29]  Dong Yi,et al.  Robust Online Learned Spatio-Temporal Context Model for Visual Tracking , 2014, IEEE Transactions on Image Processing.

[30]  Tao Zhou,et al.  Online learning and joint optimization of combined spatial-temporal models for robust visual tracking , 2017, Neurocomputing.

[31]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Nanning Zheng,et al.  Multi-timescale Collaborative Tracking. , 2016, IEEE transactions on pattern analysis and machine intelligence.

[33]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Qingming Huang,et al.  Structure-Aware Local Sparse Coding for Visual Tracking , 2018, IEEE Transactions on Image Processing.

[35]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[36]  Yuping Zhang,et al.  Linearization to Nonlinear Learning for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[37]  Wei Wei,et al.  Visual Tracking Based on the Adaptive Color Attention Tuned Sparse Generative Object Model , 2015, IEEE Transactions on Image Processing.

[38]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[40]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[41]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Gang Wang,et al.  Real-time part-based visual tracking via adaptive correlation filters , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Huchuan Lu,et al.  Robust Visual Tracking via Multiple Kernel Boosting With Affinity Constraints , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[44]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Huchuan Lu,et al.  Inverse Sparse Tracker With a Locally Weighted Distance Metric , 2015, IEEE Transactions on Image Processing.

[46]  Jie Yang,et al.  Robust Visual Tracking via Online Discriminative and Low-Rank Dictionary Learning , 2018, IEEE Transactions on Cybernetics.

[47]  Li Zhang,et al.  Discriminative Low-Rank Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[48]  Bohan Zhuang,et al.  Visual tracking via discriminative sparse similarity map. , 2014, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[49]  Ping Feng,et al.  Dual-scale structural local sparse appearance model for robust object tracking , 2017, Neurocomputing.

[50]  Yunsong Li,et al.  Improved kernelized correlation filter tracking by using spatial regularization , 2018, J. Vis. Commun. Image Represent..

[51]  Changsheng Xu,et al.  Robust Structural Sparse Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Qingshan Liu,et al.  Robust Visual Tracking via Convolutional Networks Without Training , 2015, IEEE Transactions on Image Processing.

[53]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[55]  Ling Shao,et al.  Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors , 2015, IEEE Transactions on Multimedia.