THz Diode Technology: Status, Prospects, and Applications

Found in many terahertz (THz) and submillimeter-wave systems, GaAs Schottky diodes continue to be one of the most useful THz devices. As a low-parasitic device that operates well into the THz range, Schottky diodes provide useful detection and power generation for a number of practical applications. Mixers and multipliers, working as high as ~3 THz, have already been demonstrated. This paper reviews the current status of diode technology, detailing some of the different ways for fabricating THz chips. An overview regarding the current state of technology and performance for THz frequency multipliers and mixers is presented, along with applications enabled by these diodes.

[1]  Martin Fehilly,et al.  An ultra-high efficiency high power Schottky varactor frequency doubler to 180–200 GHz , 2016, 2016 Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications.

[2]  N. Reyes,et al.  First Supra-THz Heterodyne Array Receivers for Astronomy With the SOFIA Observatory , 2015, IEEE Transactions on Terahertz Science and Technology.

[3]  Erich Schlecht,et al.  A 230 GHz MMIC-Based Sideband Separating Receiver , 2016, IEEE Transactions on Terahertz Science and Technology.

[4]  A. Cavanna,et al.  A 520–620-GHz Schottky Receiver Front-End for Planetary Science and Remote Sensing With 1070 K–1500 K DSB Noise Temperature at Room Temperature , 2016, IEEE Transactions on Terahertz Science and Technology.

[5]  N. S. Barker,et al.  1.9-3.2 THz Schottky based harmonic mixer design and characterization , 2015, 2015 European Microwave Conference (EuMC).

[6]  Jerry Waldman,et al.  Phase locking of 2.324 and 2.959 terahertz quantum cascade lasers using a Schottky diode harmonic mixer. , 2015, Optics letters.

[7]  Goutam Chattopadhyay,et al.  A Dual-Output 550 GHz frequency tripler featuring ultra-compact silicon micromachining packaging and enhanced power-handling capabilities , 2015, 2015 European Microwave Conference (EuMC).

[8]  Erich Schlecht,et al.  High-efficiency planar Schottky diode based submillimeter-wave frequency multipliers optimized for high-power operation , 2015, 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[9]  Wayne Yoshida,et al.  A 0.85 THz Low Noise Amplifier Using InP HEMT Transistors , 2015, IEEE Microwave and Wireless Components Letters.

[10]  Warren S. Grundfest,et al.  THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis , 2015, IEEE Transactions on Terahertz Science and Technology.

[11]  Goutam Chattopadhyay,et al.  A High-Power 105–120 GHz Broadband On-Chip Power-Combined Frequency Tripler , 2015, IEEE Microwave and Wireless Components Letters.

[12]  C. Jung-Kubiak,et al.  A Silicon Micromachined Eight-Pixel Transceiver Array for Submillimeter-Wave Radar , 2015, IEEE Transactions on Terahertz Science and Technology.

[13]  T. Encrenaz,et al.  Subsurface properties and early activity of comet 67P/Churyumov-Gerasimenko , 2015, Science.

[14]  R. Weikle,et al.  Design and Characterization of Integrated Submillimeter-Wave Quasi-Vertical Schottky Diodes , 2015, IEEE Transactions on Terahertz Science and Technology.

[15]  J. Stake,et al.  A 474 GHz HBV Frequency Quintupler Integrated on a 20 $\mu{\hbox{m}}$ Thick Silicon Substrate , 2015, IEEE Transactions on Terahertz Science and Technology.

[16]  U. Klein,et al.  Millimeter & sub-millimeter wave radiometer instruments for the next generation of polar orbiting meteorological satellites — MetOp-SG , 2014, 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz).

[17]  Erich Schlecht,et al.  Schottky Diode Based 1.2 THz Receivers Operating at Room-Temperature and Below for Planetary Atmospheric Sounding , 2014, IEEE Transactions on Terahertz Science and Technology.

[18]  P. Siegel Terahertz Pioneer: Robert J. Mattauch “Two Terminals Will Suffice” , 2014, IEEE Transactions on Terahertz Science and Technology.

[19]  Robert M. Weikle,et al.  160 GHz Balanced Frequency Quadruplers Based on Quasi-Vertical Schottky Varactors Integrated on Micromachined Silicon , 2014, IEEE Transactions on Terahertz Science and Technology.

[20]  Ian F. Akyildiz,et al.  TeraNets: ultra-broadband communication networks in the terahertz band , 2014, IEEE Wireless Communications.

[21]  J. Grajal,et al.  An Assessment of Available Models for the Design of Schottky-Based Multipliers Up to THz Frequencies , 2014, IEEE Transactions on Terahertz Science and Technology.

[22]  Mohammad Arif Saber,et al.  Thermal Characterization of THz Schottky Diodes Using Transient Current Measurements , 2014, IEEE Transactions on Terahertz Science and Technology.

[23]  Jesus Grajal,et al.  Physical Electro-Thermal Model for the Design of Schottky Diode-Based Circuits , 2010, IEEE Transactions on Terahertz Science and Technology.

[24]  Anders Emrich,et al.  Low noise GaAs Schottky TMIC and InP Hemt MMIC based receivers for the ISMAR and SWI instruments , 2014 .

[25]  Tadao Nagatsuma,et al.  Special issue on THz communications , 2013, Journal of Communications and Networks.

[26]  Guohui Yang,et al.  An overview of cancer treatment by terahertz radiation , 2013, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO).

[27]  Zach Griffith,et al.  A 180mW InP HBT Power Amplifier MMIC at 214 GHz , 2013, 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[28]  J. Stake,et al.  Terahertz GaAs Schottky diode mixer and multiplier MIC's based on e-beam technology , 2013, 2013 International Conference on Indium Phosphide and Related Materials (IPRM).

[29]  P. Drossart,et al.  JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system , 2013 .

[30]  Jerry Waldman,et al.  2.32 THz quantum cascade laser frequency-locked to the harmonic of a microwave synthesizer source. , 2012, Optics express.

[31]  Peter H. Siegel,et al.  Frequency tunable electronic sources working at room temperature in the 1 to 3 THz band , 2012, Optical Engineering + Applications.

[32]  Alain Maestrini,et al.  Local oscillator sub-systems for array receivers in the 1-3 THz range , 2012, Other Conferences.

[33]  Yuan Ren,et al.  Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator , 2012, 1208.5776.

[34]  J. Stake,et al.  Development of a 557 GHz GaAs monolithic membrane-diode mixer , 2012, 2012 International Conference on Indium Phosphide and Related Materials.

[35]  Ville Kangas,et al.  Submillimetre-wave receiver developments for ICI onboard MetOP-SG and ice cloud remote sensing instruments , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[36]  A. Emrich,et al.  A Broadband, Low Noise, Integrated 340 GHz Schottky Diode Receiver , 2012, IEEE Microwave and Wireless Components Letters.

[37]  P. Goldsmith,et al.  [CII] 158 micron line detection of the warm ionized medium in the Scutum--Crux spiral arm tangency , 2012, 1205.0550.

[38]  I. Mehdi,et al.  Electro-Thermal Model for Multi-Anode Schottky Diode Multipliers , 2012, IEEE Transactions on Terahertz Science and Technology.

[39]  U. U. Graf,et al.  GREAT: the SOFIA high-frequency heterodyne instrument , 2012, 1203.2845.

[40]  V. Radisic,et al.  Power Amplification at 0.65 THz Using InP HEMTs , 2012, IEEE Transactions on Microwave Theory and Techniques.

[41]  J. W. Kooi,et al.  Technology Development for the Caltech Submillimeter Observatory Balanced Receivers , 2012 .

[42]  C. E. Honingh,et al.  Characterisation of Local Oscillator Noise with a 400 - 500 GHz Integrated Balanced SIS Receiver , 2012 .

[43]  T. Phillips,et al.  Balanced Receiver Technology Development for the Caltech Submillimeter Observatory , 2012, IEEE Transactions on Terahertz Science and Technology.

[44]  Thomas W. Crowe,et al.  VNA frequency extenders to 1.1 THz , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[45]  Alain Maestrini,et al.  Demonstration of a room temperature 2.48-2.75 THz coherent spectroscopy source. , 2011, The Review of scientific instruments.

[46]  G. Chattopadhyay,et al.  Technology, Capabilities, and Performance of Low Power Terahertz Sources , 2011, IEEE Transactions on Terahertz Science and Technology.

[47]  Nuria Llombart,et al.  THz Imaging Radar for Standoff Personnel Screening , 2011, IEEE Transactions on Terahertz Science and Technology.

[48]  Byron Alderman,et al.  Schottky diode technology at Rutherford Appleton Laboratory , 2011, 2011 IEEE International Conference on Microwave Technology & Computational Electromagnetics.

[49]  Hui Wang,et al.  A Single-Waveguide In-Phase Power-Combined Frequency Doubler at 190 GHz , 2011, IEEE Microwave and Wireless Components Letters.

[50]  Alain Maestrini,et al.  A 2.5-2.7 THz room temperature electronic source , 2011 .

[51]  Safumi Suzuki,et al.  Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature , 2010 .

[52]  M. Allen,et al.  Sounding of Titan's atmosphere at submillimeter wavelengths from an orbiting spacecraft , 2010 .

[53]  Jet Propulsion Laboratory,et al.  A Sample of [CII] Clouds Tracing Dense Clouds in Weak FUV Fields observed by Herschel , 2010, 1007.5068.

[54]  D. Li,et al.  Herschel / HIFI : first science highlights Special feature L etter to the E ditor C + detection of warm dark gas in diffuse clouds , 2010 .

[55]  Miguel de Val-Borro,et al.  Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2 , 2010, 1007.1301.

[56]  Choonsup Lee,et al.  A Broadband 835–900-GHz Fundamental Balanced Mixer Based on Monolithic GaAs Membrane Schottky Diodes , 2010, IEEE Transactions on Microwave Theory and Techniques.

[57]  Imran Mehdi,et al.  A 520–590 GHz Crossbar Balanced Fundamental Schottky Mixer , 2010, IEEE Microwave and Wireless Components Letters.

[58]  J Grajal,et al.  Physics-Based Design and Optimization of Schottky Diode Frequency Multipliers for Terahertz Applications , 2010, IEEE Transactions on Microwave Theory and Techniques.

[59]  Po-Hsin Liu,et al.  A 10-mW Submillimeter-Wave Solid-State Power-Amplifier Module , 2010, IEEE Transactions on Microwave Theory and Techniques.

[60]  Peter H. Siegel,et al.  THz for space: The golden age , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[61]  Hans L. Hartnagel,et al.  PLANAR THZ SCHOTTKY DIODE BASED ON A QUASI VERTICAL DIODE STRUCTURE , 2010 .

[62]  I. Mehdi,et al.  A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multipliers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[63]  Neal R. Erickson,et al.  Terahertz Schottky-diode balanced mixers , 2009, OPTO.

[64]  T. Ishibashi,et al.  High‐power RF photodiodes and their applications , 2009 .

[65]  B. R. Bennett,et al.  Antimonide-based Diodes for Terahertz Mixers , 2008 .

[66]  Erick T. Young,et al.  The Stratospheric TeraHertz Observatory (STO) , 2008 .

[67]  J. Hesler,et al.  Development and Characterization of THz Planar Schottky Diode Mixers and Detectors , 2008 .

[68]  A. Leuther,et al.  A 220 GHz Single-Chip Receiver MMIC With Integrated Antenna , 2008, IEEE Microwave and Wireless Components Letters.

[69]  Choonsup Lee,et al.  In-Phase Power-Combined Frequency Triplers at 300 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[70]  B. Drouin,et al.  HIGH RESOLUTION MOLECULAR SPECTROSCOPY FOR PLANETARY EXPLORATION , 2008 .

[71]  R. Lin,et al.  Schottky Diode Mixers on Gallium Arsenide Antimonide or IndiumGalliumArsenide , 2008 .

[72]  Jesus Grajal,et al.  Capabilities of GaN Schottky Multipliers for LO Power Generation at Millimeter-Wave Bands , 2008 .

[73]  I. Mehdi,et al.  A Unique 520–590 GHz Biased Subharmonically-Pumped Schottky Mixer , 2007, IEEE Microwave and Wireless Components Letters.

[74]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[75]  T. Encrenaz,et al.  MIRO: Microwave Instrument for Rosetta Orbiter , 2007 .

[76]  Peter H. Siegel,et al.  The Earth observing system microwave limb sounder (EOS MLS) on the aura Satellite , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[77]  B. Thomas,et al.  A low-noise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes , 2005, IEEE Microwave and Wireless Components Letters.

[78]  R.M. Weikle,et al.  Opening the terahertz window with integrated diode circuits , 2005, IEEE Journal of Solid-State Circuits.

[79]  I. Mehdi,et al.  A 540-640-GHz high-efficiency four-anode frequency tripler , 2005, IEEE Transactions on Microwave Theory and Techniques.

[80]  Alessandro Tredicucci,et al.  Advances in THz quantum cascade lasers: fulfilling the application potential , 2005, SPIE OPTO.

[81]  S. Biber,et al.  Schottky-structures for THz-Applications based on quasi-vertical design-concept , 2005 .

[82]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[83]  I. Mehdi,et al.  A 1.7-1.9 THz local oscillator source , 2004, IEEE Microwave and Wireless Components Letters.

[84]  Ali Shakouri,et al.  Through the substrate, backside thermal measurements on active semiconductor devices using near IR thermoreflectance , 2003, Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003..

[85]  I. Mehdi,et al.  A broadband 800 GHz Schottky balanced doubler , 2002, IEEE Microwave and Wireless Components Letters.

[86]  Alain Maestrini,et al.  A high-power wideband cryogenic 200 GHz schottky substrateless multiplier: modeling, design and results , 2001 .

[87]  I. Mehdi,et al.  200, 400 and 800 GHz Schottky diode "substrateless" multipliers: design and results , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[88]  I. Mehdi,et al.  Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[89]  Alain Maestrini,et al.  Cryogenic Operation of GaAs Based Multiplier Chains to 400 GHz , 2000 .

[90]  John C. Pearson,et al.  Local oscillator system for the heterodyne instrument for FIRST (HIFI) , 2000, Astronomical Telescopes + Instrumentation.

[91]  J. Hesler,et al.  Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding , 2000 .

[92]  Richard Bradley,et al.  A high-power fixed-tuned millimeter-wave balanced frequency doubler , 1999 .

[93]  P. Siegel,et al.  Improved 240-GHz subharmonically pumped planar Schottky diode mixers for space-borne applications , 1998 .

[94]  Neal R. Erickson Diode frequency multipliers for terahertz local-oscillator applications , 1998, Astronomical Telescopes and Instrumentation.

[95]  P. Siegel,et al.  Planar diode solid-state receiver for 557 GHz with state-of-the-art performance , 1998 .

[96]  Peter H. Siegel,et al.  2.5 THz GaAs Monolithic Membrane-Diode Mixer A New Planar Circut Realization for High Frequency Semiconductor Components , 1998 .

[97]  J. Hesler,et al.  Planar Schottky Mixer Development to 1 THz and Beyond , 1998 .

[98]  Thomas W. Crowe,et al.  Monte Carlo harmonic-balance and drift-diffusion harmonic-balance analyses of 100-600 GHz Schottky barrier varactor frequency multipliers , 1997 .

[99]  J. East,et al.  Monte Carlo simulation of THz multipliers , 1997, 1997 Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[100]  Robert M. Weikle,et al.  Fixed-tuned submillimeter wavelength waveguide mixers using planar Schottky-barrier diodes , 1997 .

[101]  Philip J. Koh,et al.  PLANAR GaAs SCHOTTKY BARRIER DIODES , 1997 .

[102]  Peter H. Siegel,et al.  600 GHz planar-Schottky-diode subharmonic waveguide mixers , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[103]  Thomas W. Crowe,et al.  Progress toward solid-state local oscillators at 1 THz , 1996 .

[104]  D. Pavlidis,et al.  InGaAs-based MM-wave integrated subharmonic mixer exhibiting low input power requirement and low noise characteristics , 1996, Proceedings of 8th International Conference on Indium Phosphide and Related Materials.

[105]  A. L. Betz,et al.  Heterodyne Spectroscopy of the 63 μm O I Line in M42 , 1996, astro-ph/9603136.

[106]  P. Siegel,et al.  200 GHz WAVEGUIDE BASED SITBHARMONICALLY PUMPED MIXERS WITH PLANAR SCHOTTKY DIODES , 1996 .

[107]  Antti V. Räisänen,et al.  On the modeling and optimization of Schottky varactor frequency multipliers at submillimeter wavelengths , 1995 .

[108]  Peter H. Siegel,et al.  Measurements on a 215-GHz subharmonically pumped waveguide mixer using planar back-to-back air-bridge Schottky diodes , 1993 .

[109]  P. Siegel,et al.  Fabrication and characterization of planar integrated Schottky devices for very high frequency mixers , 1993, Proceedings of IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits.

[110]  Neal R. Erickson,et al.  A high-power millimeter-wave frequency doubler using a planar diode array , 1993 .

[111]  Antti V. Räisänen,et al.  Cooled Schottky varactor frequency multipliers at submillimeter wavelengths , 1993 .

[112]  Jack R. East,et al.  Current saturation in submillimeter-wave varactors , 1992 .

[113]  Vincent P. Manno,et al.  Liquid crystal imaging for temperature measurement of electronic devices , 1991, 1991 Proceedings, Seventh IEEE Semiconductor Thermal Measurement and Management Symposium.

[114]  Thomas W. Crowe,et al.  A micron-thickness, planar Schottky diode chip for terahertz applications with theoretical minimum parasitic capacitance , 1990, IEEE International Digest on Microwave Symposium.

[115]  N. Erickson,et al.  High efficiency submillimeter frequency multipliers , 1990, IEEE International Digest on Microwave Symposium.

[116]  V. Chin,et al.  The influence of thermal gradients on the characterization of Schottky-barrier diodes , 1990 .

[117]  R. Mattauch,et al.  A Novel Whiskerless Schottky Diode for Millimeter and Submillimeter Wave Application , 1987, 1987 IEEE MTT-S International Microwave Symposium Digest.

[118]  M. T. Faber,et al.  Millimeter-Wave, Shot-Noise Limited, Fixed-Tuned Mixer , 1985 .

[119]  L. T. Yuan A W-Band Monolithic GaAs Crossbar Mixer , 1984 .

[120]  Peter H. Siegel,et al.  Topics in the optimization of millimeter-wave mixers , 1984 .

[121]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[122]  A. R. Kerr,et al.  Noise and Loss in Balanced and Subharmonically Pumped Mixers: Part I--Theory , 1979 .

[123]  M. V. Schneider,et al.  Subharmonically Pumped Millimeter-Wave Mixers , 1978 .

[124]  Anthony R. Kerr,et al.  Low-noise room-temperature and cryogenic mixers for 80-120 GHz. [design for use on radio telescope] , 1975 .

[125]  Anthony R. Kerr,et al.  Cryogenic cooling of mixers for millimeter and centimeter wavelengths , 1973 .

[126]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[127]  J. C. Irvin,et al.  Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique , 1965 .