Simple and efficient separation of atomically precise noble metal clusters.

There is an urgent need for accessible purification and separation strategies of atomically precise metal clusters in order to promote the study of their fundamental properties. Although the separation of mixtures of atomically precise gold clusters Au25L18, where L are thiolates, has been demonstrated by advanced separation techniques, we present here the first separation of metal clusters by thin-layer chromatography (TLC), which is simple yet surprisingly efficient. This method was successfully applied to a binary mixture of Au25L18 with different ligands, as well as to a binary mixture of different cluster cores, Au25 and Au144, protected with the same ligand. Importantly, TLC even enabled the challenging separation of a multicomponent mixture of mixed-monolayer-protected Au25 clusters with closely similar chemical ligand compositions. We anticipate that the realization of such simple yet efficient separation technique will progress the detailed investigation of cluster properties.

[1]  Ammu Mathew,et al.  Noble Metal Clusters: Applications in Energy, Environment, and Biology , 2014 .

[2]  J. Chakrabarti,et al.  Coalescence of Atomically Precise Clusters on Graphenic Surfaces , 2014 .

[3]  T. Bürgi,et al.  Chirality in thiolate-protected gold clusters. , 2014, Accounts of chemical research.

[4]  A. Dass,et al.  Core size conversion: route for exclusive synthesis of Au38 or Au40 nanomolecules. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[5]  L. Lehtovaara,et al.  Supramolecular functionalization and concomitant enhancement in properties of Au(25) clusters. , 2014, ACS nano.

[6]  H. Häkkinen,et al.  Mixed-Monolayer-Protected Au25 Clusters with Bulky Calix[4]arene Functionalities. , 2014, The journal of physical chemistry letters.

[7]  Hannu Häkkinen,et al.  All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures , 2013, Nature Communications.

[8]  R. Jin,et al.  Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. , 2013, ACS nano.

[9]  T. Pradeep,et al.  Separation of precise compositions of noble metal clusters protected with mixed ligands. , 2013, Journal of the American Chemical Society.

[10]  T. Pradeep,et al.  A copper cluster protected with phenylethanethiol , 2013, Journal of Nanoparticle Research.

[11]  Uzi Landman,et al.  Au(67)(SR)(35) nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. , 2013, The journal of physical chemistry. A.

[12]  Douglas R. Kauffman,et al.  Photomediated Oxidation of Atomically Precise Au25(SC2H4Ph)18(-) Nanoclusters. , 2013, The journal of physical chemistry letters.

[13]  U. Landman,et al.  The superstable 25 kDa monolayer protected silver nanoparticle: measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster. , 2012, Nano letters.

[14]  C. Ackerson,et al.  Superatom electron configuration predicts thermal stability of Au25(SR)18 nanoclusters. , 2012, Journal of the American Chemical Society.

[15]  Zhikun Wu,et al.  Quantum sized gold nanoclusters with atomic precision. , 2012, Accounts of chemical research.

[16]  Y. Negishi,et al.  Synthesis and the Origin of the Stability of Thiolate-Protected Au130 and Au187 Clusters. , 2012, Journal of Physical Chemistry Letters.

[17]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[18]  T. Bürgi,et al.  First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands , 2012, Nature Communications.

[19]  T. Bürgi,et al.  Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters. , 2011, Analytical chemistry.

[20]  Y. Negishi,et al.  Isolation and structural characterization of magic silver clusters protected by 4-(tert-butyl)benzyl mercaptan. , 2011, Chemical communications.

[21]  R. Jin,et al.  Ambient Synthesis of Au144(SR)60 Nanoclusters in Methanol , 2011 .

[22]  Kathleen A. Durkin,et al.  A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. , 2010, Nature chemistry.

[23]  T. Pradeep,et al.  Ag(9) quantum cluster through a solid-state route. , 2010, Journal of the American Chemical Society.

[24]  S. Nair,et al.  Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: metal ion sensing, metal-enhanced luminescence, and biolabeling. , 2010, Chemistry.

[25]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[26]  T. Pradeep,et al.  Luminescent Ag7 and Ag8 clusters by interfacial synthesis. , 2010, Angewandte Chemie.

[27]  R. Jin,et al.  Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of alpha,beta-unsaturated ketones and aldehydes. , 2010, Angewandte Chemie.

[28]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[29]  Y. Negishi,et al.  Size Determination of Gold Clusters by Polyacrylamide Gel Electrophoresis in a Large Cluster Region , 2009 .

[30]  R. Jin,et al.  Reversible switching of magnetism in thiolate-protected Au25 superatoms. , 2009, Journal of the American Chemical Society.

[31]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[32]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[33]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[34]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[35]  H. Yao,et al.  Chiral functionalization of optically inactive monolayer-protected silver nanoclusters by chiral ligand-exchange reactions. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[36]  Y. Negishi,et al.  Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. , 2005, Journal of the American Chemical Society.

[37]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.