A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force

We have established the cohesive law for interfaces between a carbon nanotube (CNT) and polymer that are not well bonded and are characterized by the van der Waals force. The tensile cohesive strength and cohesive energy are given in terms of the area density of carbon nanotube and volume density of polymer, as well as the parameters in the van der Waals force. For a CNT in an infinite polymer, the shear cohesive stress vanishes, and the tensile cohesive stress depends only on the opening displacement. For a CNT in a finite polymer matrix, the tensile cohesive stress remains the same, but the shear cohesive stress depends on both opening and sliding displacements, i.e., the tension/shear coupling. The simple, analytical expressions of the cohesive law are useful to study the interaction between CNT and polymer, such as in CNT-reinforced composites. The effect of polymer surface roughness on the cohesive law is also studied.

[1]  Huajian Gao,et al.  The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites , 2004 .

[2]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[3]  Philippe H. Geubelle,et al.  Intersonic crack propagation in homogeneous media under shear-dominated loading: Theoretical analysis , 2001 .

[4]  Huajian Gao,et al.  Intersonic Crack Propagation—Part I: The Fundamental Solution , 2001 .

[5]  Soonsung. Hong,et al.  Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method , 2003 .

[6]  A. Rosakis,et al.  Subsonic and intersonic mode II crack propagation with a rate-dependent cohesive zone , 2002 .

[7]  S. Shi,et al.  Failure mechanisms of carbon nanotube/epoxy composites pretreated in different temperature environments , 2002 .

[8]  Kenneth M. Liechti,et al.  COHESIVE ZONE MODELING OF CRACK NUCLEATION AT BIMATERIAL CORNERS , 2000 .

[9]  Yonggang Huang,et al.  Finite element implementation of virtual internal bond model for simulating crack behavior , 2004 .

[10]  Yijun Liu,et al.  Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element , 2003 .

[11]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[12]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[13]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[14]  Peter J. F. Harris,et al.  Carbon nanotube composites , 2004 .

[15]  C. Liu,et al.  The cohesive law for the particle/matrix interfaces in high explosives , 2005 .

[16]  N. Yao,et al.  Molecular mechanics of binding in carbon-nanotube–polymer composites , 2000 .

[17]  K. Liao,et al.  Physical interactions at carbon nanotube-polymer interface , 2003 .

[18]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[19]  C. Liu,et al.  Effect of nonlinear interface debonding on the constitutive model of composite materials , 2006 .

[20]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[21]  Ben Wang,et al.  Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites , 2004 .

[22]  M. Gregory,et al.  Equivalent-Continuum Modeling of Nano-Structured Materials , 2001 .

[23]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[24]  Donald W. Brenner,et al.  The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation , 2003 .

[25]  G. Odegard Equivalent-Continuum Modeling of Nanostructured Materials , 2007 .

[26]  Kyeongjae Cho,et al.  Nanomechanics of carbon nanotubes and composites , 2003 .

[27]  S. Namilae,et al.  Multiscale Model to Study the Effect of Interfaces in Carbon Nanotube-Based Composites , 2005 .

[28]  Z. Bažant Concrete fracture models: testing and practice , 2002 .

[29]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[30]  Cheng Liu,et al.  The Mori–Tanaka method for composite materials with nonlinear interface debonding , 2005 .

[31]  Ares J. Rosakis,et al.  Effect of loading and geometry on the subsonic/intersonic transition of a bimaterial interface crack , 2003 .

[32]  K. Hsia,et al.  Fracture Simulation Using an Elasto-Viscoplastic Virtual Internal Bond Model With Finite Elements , 2004 .

[33]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[34]  Tsu-Wei Chou,et al.  Multiscale modeling of carbon nanotube reinforced polymer composites. , 2003, Journal of nanoscience and nanotechnology.

[35]  B. Maruyama,et al.  Carbon nanotubes and nanofibers in composite materials , 2002 .

[36]  Albert S. Kobayashi,et al.  Fracture process zone modeling of monolithic Al2O3 , 1999 .

[37]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[38]  Chun Man Chan,et al.  Experimental Determination of the Tension-Softening Relations for Cementitious Composites , 1987 .

[39]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[40]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[41]  P. Geubelle,et al.  Analysis of a rate-dependent cohesive model for dynamic crack propagation , 2002 .

[42]  Huajian Gao,et al.  Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model , 2002 .

[43]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[44]  K. Liao,et al.  Interfacial characteristics of a carbon nanotube–polystyrene composite system , 2001 .