Patient-derived orthotopic xenografts of pediatric brain tumors: a St. Jude resource

[1]  M. Roussel,et al.  Preclinical Models of Craniospinal Irradiation for Medulloblastoma , 2020, Cancers.

[2]  David T. W. Jones,et al.  The Molecular Landscape of ETMR at Diagnosis and Relapse , 2019, Nature.

[3]  R. Russell,et al.  EZHIP / CXorf67 mimics K27M mutated oncohistones and functions as an intrinsic inhibitor of PRC2 function in aggressive posterior fossa ependymoma. , 2019, Neuro-oncology.

[4]  H. Clevers,et al.  Xenograft and organoid model systems in cancer research , 2019, The EMBO journal.

[5]  A. Shilatifard,et al.  CATACOMB: An endogenous inducible gene that antagonizes H3K27 methylation activity of Polycomb repressive complex 2 via an H3K27M-like mechanism , 2019, Science Advances.

[6]  Martin Sill,et al.  Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes , 2019, Acta Neuropathologica.

[7]  Katharine L. Diehl,et al.  PFA ependymoma-associated protein EZHIP inhibits PRC2 activity through a H3 K27M-like mechanism , 2019, bioRxiv.

[8]  Gregory P. Way,et al.  Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design , 2019, Cell reports.

[9]  M. Roussel,et al.  Preclinical Modeling of Image-Guided Craniospinal Irradiation for Very-High-Risk Medulloblastoma. , 2019, International journal of radiation oncology, biology, physics.

[10]  David T. W. Jones,et al.  A biobank of patient-derived pediatric brain tumor models , 2018, Nature Medicine.

[11]  Emmanuel Barillot,et al.  Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. , 2018, Cancer cell.

[12]  David T. W. Jones,et al.  Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas , 2018, Acta Neuropathologica.

[13]  David T. W. Jones,et al.  Risk-adapted therapy for young children with medulloblastoma (SJYC07): therapeutic and molecular outcomes from a multicentre, phase 2 trial. , 2018, The Lancet. Oncology.

[14]  Till Acker,et al.  DNA methylation-based classification of central nervous system tumours , 2018, Nature.

[15]  Rameen Beroukhim,et al.  Patient-derived xenografts undergo murine-specific tumor evolution , 2017, Nature Genetics.

[16]  D. Johnston,et al.  Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome , 2017, Acta Neuropathologica.

[17]  Roland Eils,et al.  The whole-genome landscape of medulloblastoma subtypes , 2017, Nature.

[18]  P. Northcott,et al.  Genomic Analysis of Childhood Brain Tumors: Methods for Genome-Wide Discovery and Precision Medicine Become Mainstream. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[19]  A. Goldenberg,et al.  Intertumoral Heterogeneity within Medulloblastoma Subgroups. , 2017, Cancer cell.

[20]  M. Kool,et al.  Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation , 2017, Scientific Reports.

[21]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[22]  Mei Lu,et al.  Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. , 2016, Cancer cell.

[23]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[24]  J. Devincenzo,et al.  ALS-008176 for Respiratory Syncytial Virus Infection. , 2016, The New England journal of medicine.

[25]  Roland Eils,et al.  Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. , 2016, Cancer cell.

[26]  Roland Eils,et al.  New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs , 2016, Cell.

[27]  J. Easton,et al.  The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing , 2016, Modern Pathology.

[28]  Li Ding,et al.  Germline Mutations in Predisposition Genes in Pediatric Cancer. , 2015, The New England journal of medicine.

[29]  Aman N. Patel,et al.  CONSERTING: integrating copy-number analysis with structural-variation detection , 2015, Nature Methods.

[30]  Gary D Bader,et al.  Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. , 2015, The Lancet. Oncology.

[31]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[32]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[33]  Gary D Bader,et al.  Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma , 2014, Nature.

[34]  J. Olson,et al.  Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. , 2014, Cancer cell.

[35]  Volker Hovestadt,et al.  Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity , 2013, Acta Neuropathologica.

[36]  W. Weiss,et al.  What underlies the diversity of brain tumors? , 2013, Cancer and Metastasis Reviews.

[37]  Stefan M. Pfister,et al.  HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment , 2012, Journal of Neuro-Oncology.

[38]  P. Northcott,et al.  Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. , 2012, Cancer cell.

[39]  T. Merchant,et al.  Distinct disease-risk groups in pediatric supratentorial and posterior fossa ependymomas , 2012, Acta Neuropathologica.

[40]  P. Febbo,et al.  An animal model of MYC-driven medulloblastoma. , 2012, Cancer cell.

[41]  M. Roussel,et al.  A mouse model of the most aggressive subgroup of human medulloblastoma. , 2012, Cancer cell.

[42]  Kiran C. Bobba,et al.  The genetic basis of early T-cell precursor acute lymphoblastic leukaemia , 2012, Nature.

[43]  Matthew W. Wilson,et al.  A Novel Retinoblastoma Therapy from Genomic and Epigenetic Analyses , 2011, Nature.

[44]  Michael C. Rusch,et al.  CREST maps somatic structural variation in cancer genomes with base-pair resolution , 2011, Nature Methods.

[45]  J. Mesirov,et al.  Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[46]  Kenneth H. Buetow,et al.  Bioinformatics Applications Note Sequence Analysis Bambino: a Variant Detector and Alignment Viewer for Next-generation Sequencing Data in the Sam/bam Format , 2022 .

[47]  P. Lichter,et al.  Molecular staging of intracranial ependymoma in children and adults. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[48]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[49]  Michael D. Prados,et al.  A human brainstem glioma xenograft model enabled for bioluminescence imaging , 2009, Journal of Neuro-Oncology.

[50]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[51]  P. Lichter,et al.  Identification of Gains on 1q and Epidermal Growth Factor Receptor Overexpression as Independent Prognostic Markers in Intracranial Ependymoma , 2006, Clinical Cancer Research.

[52]  J. Downing,et al.  Germline Mutations in Predisposition Genes in Pediatric Cancer. , 2016, The New England journal of medicine.

[53]  Jill S Barnholtz-Sloan,et al.  Alex's Lemonade Stand Foundation Infant and Childhood Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. , 2015, Neuro-oncology.

[54]  Claude-Alain H. Roten,et al.  Fast and accurate short read alignment with Burrows–Wheeler transform , 2009, Bioinform..