On the Permanental Polynomials of Matrices

[1]  Naonori Kakimura,et al.  Matching structure of symmetric bipartite graphs and a generalization of Pólya's problem , 2010, J. Comb. Theory, Ser. B.

[2]  Wei Li,et al.  Computing the permanental polynomials of bipartite graphs by Pfaffian orientation , 2010, Discret. Appl. Math..

[3]  Miklós Bóna,et al.  A combinatorial approach to matrix theory and Its applications by Richard Brualdi and Dragos Cvetkovic, Published by Cambridge Press, 2009 824 pages, hardcover , 2010, SIGA.

[4]  Y. Yeh,et al.  Dimer problem on the cylinder and torus , 2008 .

[5]  Jean-Guillaume Dumas,et al.  Efficient computation of the characteristic polynomial , 2005, ISSAC.

[6]  William McCuaig,et al.  Pólya's Permanent Problem , 2004, Electron. J. Comb..

[7]  Fuji Zhang,et al.  On the Permanental Polynomials of Some Graphs , 2004 .

[8]  C. Little,et al.  Even Circuits of Prescribed Clockwise Parity , 2002, Electronic Journal of Combinatorics.

[9]  Gordon G. Cash,et al.  Permanental Polynomials of the Smaller Fullerenes , 2000, J. Chem. Inf. Comput. Sci..

[10]  Glenn Tesler,et al.  Matchings in Graphs on Non-orientable Surfaces , 2000, J. Comb. Theory, Ser. B.

[11]  K. Heyde,et al.  An Accurate and Efficient Algorithm for the Computation of the Characteristic Polynomial of a General Square Matrix , 1998, math/9804133.

[12]  Russell Merris,et al.  Permanental polynomials of graphs , 1981 .

[13]  C. Little A characterization of convertible (0, 1)-matrices , 1975 .

[14]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[15]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..