MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma

[1]  M. Moghbeli,et al.  Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression , 2023, Journal of Translational Medicine.

[2]  M. Moghbeli,et al.  MicroRNAs as the pivotal regulators of cisplatin resistance in head and neck cancers , 2023, Cancer Cell International.

[3]  M. Moghbeli,et al.  PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells , 2023, Cell Communication and Signaling.

[4]  M. Moghbeli MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. , 2023, Pathology, research and practice.

[5]  M. Moghbeli,et al.  MicroRNAs as the critical regulators of autophagy-mediated cisplatin response in tumor cells , 2023, Cancer Cell International.

[6]  Hsiu-Chen Huang,et al.  ADAM17 Confers Temozolomide Resistance in Human Glioblastoma Cells and miR-145 Regulates Its Expression , 2023, International journal of molecular sciences.

[7]  S. Shahidsales,et al.  Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. , 2023, Pathology, research and practice.

[8]  I. Mellinghoff,et al.  Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. , 2023, JAMA.

[9]  Qingdong Guo,et al.  Exosome-transmitted circCABIN1 promotes temozolomide resistance in glioblastoma via sustaining ErbB downstream signaling , 2023, Journal of Nanobiotechnology.

[10]  Ligang Lin,et al.  LncRNA HOXA-AS2 Promotes Temozolomide Resistance in Glioblastoma by Regulated miR-302a-3p/IGF1 Axis , 2022, Genetics research.

[11]  Ping Liu,et al.  miR-1297 sensitizes glioma cells to temozolomide (TMZ) treatment through targeting adrenomedullin (ADM) , 2022, Journal of Translational Medicine.

[12]  M. Abbaszadegan,et al.  PI3K/AKT signaling pathway as a critical regulator of Cisplatin response in tumor cells , 2022, Oncology research.

[13]  M. Mojarrad,et al.  Role of microRNAs in regulation of WNT signaling pathway in urothelial and prostate cancers , 2022, Egyptian Journal of Medical Human Genetics.

[14]  M. Moghbeli,et al.  MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer , 2022, Biomarker research.

[15]  M. Moghbeli,et al.  MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells , 2022, Cell Communication and Signaling.

[16]  Qingqing Liu,et al.  Oncogenic Forkhead box D3 antisense RNA 1 promotes cell survival and confers temozolomide resistance in glioblastoma cells through the miR-128-3p/WEE1 G2 checkpoint kinase axis , 2022, Bioengineered.

[17]  Shraddha Tripathi,et al.  Transforming Growth Factor-Beta-Regulated LncRNA-MUF Promotes Invasion by Modulating the miR-34a Snail1 Axis in Glioblastoma Multiforme , 2022, Frontiers in Oncology.

[18]  A. Sufianov,et al.  The role of microRNA in the pathogenesis of glial brain tumors , 2022, Non-coding RNA research.

[19]  Aamir Ahmad,et al.  The Role of MicroRNAs in Therapeutic Resistance of Malignant Primary Brain Tumors , 2021, Frontiers in Cell and Developmental Biology.

[20]  M. Moghbeli,et al.  Molecular mechanisms of the microRNA-132 during tumor progressions , 2021, Cancer Cell International.

[21]  Kuanhong Wang,et al.  LINC00511 facilitates Temozolomide resistance of glioblastoma cells via sponging miR‐126‐5p and activating Wnt/β‐catenin signaling , 2021, Journal of biochemical and molecular toxicology.

[22]  Xiaobing Jiang,et al.  Long non-coding RNA OIP5-AS1 inhibition upregulates microRNA-129-5p to repress resistance to temozolomide in glioblastoma cells via downregulating IGF2BP2. , 2021, Cell biology and toxicology.

[23]  M. Moghbeli,et al.  MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells , 2021, Genes and environment : the official journal of the Japanese Environmental Mutagen Society.

[24]  M. H. Shahi,et al.  Glioblastoma and MiRNAs , 2021, Cancers.

[25]  Jie Wei,et al.  Hypoxia-Induced miR-137 Inhibition Increased Glioblastoma Multiforme Growth and Chemoresistance Through LRP6 , 2021, Frontiers in Oncology.

[26]  Y. You,et al.  Extracellular vesicles derived from hypoxic glioma stem-like cells confer temozolomide resistance on glioblastoma by delivering miR-30b-3p , 2021, Theranostics.

[27]  A. Kaye,et al.  Reduced EGFR and increased miR-221 is associated with increased resistance to temozolomide and radiotherapy in glioblastoma , 2020, Scientific Reports.

[28]  Y. You,et al.  EIF4A3-induced circular RNA ASAP1 promotes tumorigenesis and temozolomide resistance of glioblastoma via NRAS/MEK1/ERK1–2 signaling , 2020, Neuro-oncology.

[29]  Yingyi Wang,et al.  TGF-β1 modulates temozolomide resistance in glioblastoma via altered microRNA processing and elevated MGMT , 2020, Neuro-oncology.

[30]  F. Guan,et al.  MicroRNA-128-3p Enhances the Chemosensitivity of Temozolomide in Glioblastoma by Targeting c-Met and EMT , 2020, Scientific Reports.

[31]  Ivan S. Kotchetkov,et al.  A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks , 2020, Cancer Research.

[32]  Y. You,et al.  DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma , 2020, Molecular Cancer.

[33]  Chuanlu Jiang,et al.  Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways , 2020, Nature Communications.

[34]  Zhaosheng Sun,et al.  PCBP2 promotes the development of glioma by regulating FHL3/TGF‐β/Smad signaling pathway , 2019, Journal of cellular physiology.

[35]  Chenlong Li,et al.  Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme , 2019, Journal of Experimental & Clinical Cancer Research.

[36]  S. Rose-John,et al.  ADAM17: An Emerging Therapeutic Target for Lung Cancer , 2019, Cancers.

[37]  Shanshan Zhao,et al.  miR‐126‐3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/&bgr;‐catenin signaling via targeting SOX2 , 2019, Life sciences.

[38]  W. Rashed C-MET as a potential target therapy toward personalized therapy in some pediatric tumors: An overview. , 2018, Critical reviews in oncology/hematology.

[39]  C. Fu,et al.  Combination with TMZ and miR-505 inhibits the development of glioblastoma by regulating the WNT7B/Wnt/β-catenin signaling pathway. , 2018, Gene.

[40]  J. Sarkaria,et al.  Hypoxia-inducible factor 2α: a novel target in gliomas. , 2018, Future medicinal chemistry.

[41]  Tao Chen,et al.  microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. , 2018, Archives of biochemistry and biophysics.

[42]  Chi Zhang,et al.  Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132 , 2018, Molecular Cancer.

[43]  Liang Zhao,et al.  miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma , 2018, Journal of neuro-oncology.

[44]  Jennifer S. Yu,et al.  Ibrutinib inactivates BMX-STAT3 in glioma stem cells to impair malignant growth and radioresistance , 2018, Science Translational Medicine.

[45]  A. Huang,et al.  miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway , 2018, Journal of Hematology & Oncology.

[46]  B. Jiang,et al.  MicroRNA-30a increases the chemosensitivity of U251 glioblastoma cells to temozolomide by directly targeting beclin 1 and inhibiting autophagy , 2018, Experimental and therapeutic medicine.

[47]  Z. Wang,et al.  miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma , 2018, Cell Death & Disease.

[48]  Yijian Zhang,et al.  MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7 , 2018, Cell Death & Disease.

[49]  Yu Liu,et al.  Long noncoding RNA MALAT1 knockdown reverses chemoresistance to temozolomide via promoting microRNA‐101 in glioblastoma , 2018, Cancer medicine.

[50]  J. Grötzinger,et al.  Molecular insights into the multilayered regulation of ADAM17: The role of the extracellular region. , 2017, Biochimica et biophysica acta. Molecular cell research.

[51]  Yingyi Wang,et al.  MicroRNA-625 inhibits the proliferation and increases the chemosensitivity of glioma by directly targeting AKT2. , 2017, American journal of cancer research.

[52]  M. Lopes,et al.  Microglia-glioblastoma interactions: New role for Wnt signaling. , 2017, Biochimica et biophysica acta. Reviews on cancer.

[53]  M. Underwood,et al.  FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer , 2017, Molecular Cancer.

[54]  Quan P. Ly,et al.  MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. , 2017, Cancer cell.

[55]  Rui Li,et al.  MiR-181b modulates chemosensitivity of glioblastoma multiforme cells to temozolomide by targeting the epidermal growth factor receptor , 2017, Journal of Neuro-Oncology.

[56]  Ning Liu,et al.  MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT , 2017, Journal of Neuro-Oncology.

[57]  B. Kamińska,et al.  Immune microenvironment of gliomas , 2017, Laboratory Investigation.

[58]  Juan Shi,et al.  Sox2 inhibits Wnt-β-catenin signaling and metastatic potency of cisplatin-resistant lung adenocarcinoma cells , 2017, Molecular medicine reports.

[59]  Margarethus M. Paulides,et al.  Fast and high temperature hyperthermia coupled with radiotherapy as a possible new treatment for glioblastoma , 2016, Journal of therapeutic ultrasound.

[60]  Yang Zhang,et al.  MicroRNA-21 promotes migration and invasion of glioma cells via activation of Sox2 and β-catenin signaling , 2016, Molecular medicine reports.

[61]  C. Shih,et al.  The Inhibition of microRNA-128 on IGF-1-Activating mTOR Signaling Involves in Temozolomide-Induced Glioma Cell Apoptotic Death , 2016, PloS one.

[62]  Wenwen Yin,et al.  Elevated E2F7 expression predicts poor prognosis in human patients with gliomas , 2016, Journal of Clinical Neuroscience.

[63]  Xiahong Qiu,et al.  MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma , 2016, Oncotarget.

[64]  D. Backos,et al.  Targeting WEE1 Kinase in Cancer. , 2016, Trends in pharmacological sciences.

[65]  J. D. de Groot,et al.  Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. , 2016, Neuro-oncology.

[66]  M. Stack,et al.  Wnt5a Signaling in Cancer , 2016, Cancers.

[67]  Liu Cao,et al.  PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma , 2016, Oncotarget.

[68]  Ç. Biray Avcı,et al.  Role of mTOR in glioblastoma. , 2016, Gene.

[69]  S. Babashah,et al.  Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. , 2015, European journal of cancer.

[70]  Lei Shi,et al.  PI3K inhibitor combined with miR-125b inhibitor sensitize TMZ-induced anti-glioma stem cancer effects through inactivation of Wnt/β-catenin signaling pathway , 2015, In Vitro Cellular & Developmental Biology - Animal.

[71]  W. Xu,et al.  HMGB1 translocation is involved in the transformation of autophagy complexes and promotes chemoresistance in leukaemia. , 2015, International journal of oncology.

[72]  Qiang Liu,et al.  miR‐155 Regulates Glioma Cells Invasion and Chemosensitivity by p38 Isforms In Vitro , 2015, Journal of cellular biochemistry.

[73]  Anne Clavreul,et al.  Toward an effective strategy in glioblastoma treatment. Part I: resistance mechanisms and strategies to overcome resistance of glioblastoma to temozolomide. , 2015, Drug discovery today.

[74]  R. Gambari,et al.  Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review) , 2015, International journal of oncology.

[75]  C. Hadjipanayis,et al.  Radiosensitivity enhancement of radioresistant glioblastoma by epidermal growth factor receptor antibody-conjugated iron-oxide nanoparticles , 2015, Journal of Neuro-Oncology.

[76]  Xinbing Sui,et al.  The role of STAT3 in autophagy , 2015, Autophagy.

[77]  Zuozhang Yang,et al.  MicroRNAs in apoptosis, autophagy and necroptosis , 2015, Oncotarget.

[78]  Daoyang Zhou,et al.  miR-20a mediates temozolomide-resistance in glioblastoma cells via negatively regulating LRIG1 expression. , 2015, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[79]  J. Sarkaria,et al.  Critical functions of RhoB in support of glioblastoma tumorigenesis. , 2015, Neuro-oncology.

[80]  S. Howng,et al.  Bcl2L12 with a BH3-like domain in regulating apoptosis and TMZ-induced autophagy: a prospective combination of ABT-737 and TMZ for treating glioma. , 2015, International journal of oncology.

[81]  Qi-En Wang,et al.  TGF-β signaling and its targeting for glioma treatment. , 2015, American journal of cancer research.

[82]  M. Kastan,et al.  The DNA damage response: implications for tumor responses to radiation and chemotherapy. , 2015, Annual review of medicine.

[83]  Steven J. Greco,et al.  Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level , 2015, Oncotarget.

[84]  K. Muraszko,et al.  Silencing BMI1 eliminates tumor formation of pediatric glioma CD133+ cells not by affecting known targets but by down-regulating a novel set of core genes , 2014, Acta neuropathologica communications.

[85]  Hui Chen,et al.  Sox2 is involved in paclitaxel resistance of the prostate cancer cell line PC-3 via the PI3K/Akt pathway. , 2014, Molecular medicine reports.

[86]  M. Lotze,et al.  You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia , 2014, Leukemia.

[87]  Zeyou Wang,et al.  miR-128 and miR-149 enhance the chemosensitivity of temozolomide by Rap1B-mediated cytoskeletal remodeling in glioblastoma. , 2014, Oncology reports.

[88]  J. Utikal,et al.  SOX2 and cancer: current research and its implications in the clinic , 2014, Clinical and Translational Medicine.

[89]  L. Mariani,et al.  miR-125b controls apoptosis and temozolomide resistance by targeting TNFAIP3 and NKIRAS2 in glioblastomas , 2014, Cell Death and Disease.

[90]  Lei Shi,et al.  miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1 , 2014, Tumor Biology.

[91]  Yanjun Zeng,et al.  miR-125b Inhibitor May Enhance the Invasion-Prevention Activity of Temozolomide in Glioblastoma Stem Cells by Targeting PIAS3 , 2014, BioDrugs.

[92]  L. Deangelis,et al.  Glioblastoma and other malignant gliomas: a clinical review. , 2013, JAMA.

[93]  Bruno M. Simões,et al.  Sox2 promotes tamoxifen resistance in breast cancer cells , 2013, EMBO molecular medicine.

[94]  H. Cao,et al.  O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas , 2013, Cell Death and Disease.

[95]  N. Chattipakorn,et al.  Roles of p38-MAPK in insulin resistant heart: evidence from bench to future bedside application. , 2013, Current pharmaceutical design.

[96]  Dajiang Xie,et al.  LRIG1 dictates the chemo-sensitivity of temozolomide (TMZ) in U251 glioblastoma cells via down-regulation of EGFR/topoisomerase-2/Bcl-2. , 2013, Biochemical and biophysical research communications.

[97]  Guan Sun,et al.  MicroRNA-125b inhibitor sensitizes human primary glioblastoma cells to chemotherapeutic drug temozolomide on invasion , 2013, In Vitro Cellular & Developmental Biology - Animal.

[98]  C. Miracco,et al.  microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells , 2013, Cancer biology & therapy.

[99]  C. Qin,et al.  Suppression of Cholangiocarcinoma Cell Growth by Human Umbilical Cord Mesenchymal Stem Cells: A Possible Role of Wnt and Akt Signaling , 2013, PloS one.

[100]  William Pao,et al.  Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[101]  J. Testa,et al.  Diverse mechanisms of AKT pathway activation in human malignancy. , 2013, Current cancer drug targets.

[102]  M. Mizoguchi,et al.  Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma , 2012, Front. Oncol..

[103]  P. Kleihues,et al.  The Definition of Primary and Secondary Glioblastoma , 2012, Clinical Cancer Research.

[104]  P. Roux,et al.  Cooperative Anti-Invasive Effect of Cdc42/Rac1 Activation and ROCK Inhibition in SW620 Colorectal Cancer Cells with Elevated Blebbing Activity , 2012, PloS one.

[105]  J. Massagué TGFβ signalling in context , 2012, Nature Reviews Molecular Cell Biology.

[106]  Hong Lin,et al.  Prognostic significance of kappaB-Ras1 expression in gliomas , 2012, Medical Oncology.

[107]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[108]  M. Prescott,et al.  The Intriguing Life of Autophagosomes , 2012, International journal of molecular sciences.

[109]  Q. Xia,et al.  Autophagy precedes apoptosis during the remodeling of silkworm larval midgut , 2012, Apoptosis.

[110]  Scott M Lippman,et al.  Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy , 2012, Expert opinion on therapeutic targets.

[111]  Jingxuan Yang,et al.  Deregulated Signaling Pathways in Glioblastoma Multiforme: Molecular Mechanisms and Therapeutic Targets , 2012, Cancer investigation.

[112]  Q. Xia,et al.  Autophagy precedes apoptosis during the remodeling of silkworm larval midgut , 2011, Apoptosis.

[113]  Z. Elazar,et al.  Biogenesis and cargo selectivity of autophagosomes. , 2011, Annual review of biochemistry.

[114]  Xuejun Jiang,et al.  PARP and RIP 1 are required for autophagy induced by 11'-deoxyverticillin A, which precedes caspase-dependent apoptosis , 2011, Autophagy.

[115]  K. Aird,et al.  Targeting GLI1 expression in human inflammatory breast cancer cells enhances apoptosis and attenuates migration , 2011, British Journal of Cancer.

[116]  K. Burridge,et al.  Isoform-specific differences between Rap1A and Rap1B GTPases in the formation of endothelial cell junctions , 2011, Small GTPases.

[117]  B. Meléndez,et al.  Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action , 2011, Cell Death and Differentiation.

[118]  D. Dinh,et al.  Cathepsin B facilitates autophagy-mediated apoptosis in SPARC overexpressed primitive neuroectodermal tumor cells , 2010, Cell Death and Differentiation.

[119]  M. Funakoshi-Tago,et al.  κB-Ras Is a Nuclear-Cytoplasmic Small GTPase That Inhibits NF-κB Activation through the Suppression of Transcriptional Activation of p65/RelA* , 2010, The Journal of Biological Chemistry.

[120]  C. Croce,et al.  MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. , 2010, Cancer research.

[121]  T. Helleday Homologous recombination in cancer development, treatment and development of drug resistance. , 2010, Carcinogenesis.

[122]  I. Wertz,et al.  A20: from ubiquitin editing to tumour suppression , 2010, Nature Reviews Cancer.

[123]  Erwin G. Van Meir,et al.  Exciting New Advances in Neuro‐Oncology: The Avenue to a Cure for Malignant Glioma , 2010, CA: a cancer journal for clinicians.

[124]  R. Hariharan,et al.  GSK3β: role in therapeutic landscape and development of modulators , 2010, British journal of pharmacology.

[125]  Noula Shembade,et al.  Inhibition of NF-κB Signaling by A20 Through Disruption of Ubiquitin Enzyme Complexes , 2010, Science.

[126]  G. Semenza Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics , 2010, Oncogene.

[127]  T. Maehama,et al.  Role of Rap1B and tumor suppressor PTEN in the negative regulation of lysophosphatidic acid--induced migration by isoproterenol in glioma cells. , 2009, Molecular biology of the cell.

[128]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[129]  J. Villano,et al.  Temozolomide in malignant gliomas: current use and future targets , 2009, Cancer Chemotherapy and Pharmacology.

[130]  Bruce Mickey,et al.  EGFRvIII and DNA double-strand break repair: a molecular mechanism for radioresistance in glioblastoma. , 2009, Cancer research.

[131]  H. Jiang,et al.  Downregulation of Wnt2 and β-catenin by siRNA suppresses malignant glioma cell growth , 2009, Cancer Gene Therapy.

[132]  J. Sarkaria,et al.  Effective sensitization of temozolomide by ABT-888 is lost with development of temozolomide resistance in glioblastoma xenograft lines , 2009, Molecular Cancer Therapeutics.

[133]  V. N. Balaji,et al.  GSK3β: A master switch and a promising target , 2008 .

[134]  J. Herman,et al.  Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[135]  A. Ridley,et al.  Rho GTPases in cancer cell biology , 2008, FEBS letters.

[136]  C. James,et al.  Mechanisms of Chemoresistance to Alkylating Agents in Malignant Glioma , 2008, Clinical Cancer Research.

[137]  G. Tortora,et al.  EGFR antagonists in cancer treatment. , 2008, The New England journal of medicine.

[138]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[139]  K. Caron,et al.  Adrenomedullin signaling is necessary for murine lymphatic vascular development. , 2008, The Journal of clinical investigation.

[140]  M. Nicholas,et al.  Glioblastoma multiforme: evidence-based approach to therapy , 2007, Expert review of anticancer therapy.

[141]  L. Chin,et al.  Malignant astrocytic glioma: genetics, biology, and paths to treatment. , 2007, Genes & development.

[142]  Mark R Gilbert,et al.  Chemoradiotherapy in malignant glioma: standard of care and future directions. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[143]  Stephen L. Abrams,et al.  Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. , 2007, Biochimica et biophysica acta.

[144]  J. Trojan.,et al.  Insulin-like growth factor type I biology and targeting in malignant gliomas , 2007, Neuroscience.

[145]  M. Weller,et al.  Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-β-dependent HIF-1α-mediated induction of CXCL12 , 2006 .

[146]  David J. Yang,et al.  The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. , 2006, Neuro-oncology.

[147]  T. Shimokawa,et al.  Inhibition of GLI1 gene activation by Patched1. , 2006, The Biochemical journal.

[148]  Masakazu Toi,et al.  Nuclear factor-κB inhibitors as sensitizers to anticancer drugs , 2005, Nature Reviews Cancer.

[149]  R. Mirimanoff,et al.  MGMT gene silencing and benefit from temozolomide in glioblastoma. , 2005, The New England journal of medicine.

[150]  John H. Zhang,et al.  Insulin-like growth factor-I decreased etoposide-induced apoptosis in glioma cells by increasing bcl-2 expression and decreasing CPP32 activity , 2005, Neurological research.

[151]  Y. Kondo,et al.  Pivotal Role of the Cell Death Factor BNIP3 in Ceramide-Induced Autophagic Cell Death in Malignant Glioma Cells , 2004, Cancer Research.

[152]  K. Mori,et al.  Adrenomedullin Infusion Attenuates Myocardial Ischemia/Reperfusion Injury Through the Phosphatidylinositol 3-Kinase/Akt-Dependent Pathway , 2004, Circulation.

[153]  Boris Freidlin,et al.  Targeting epidermal growth factor receptor—are we missing the mark? , 2003, The Lancet.

[154]  G. Prendergast,et al.  Actin' up: RhoB in cancer and apoptosis , 2001, Nature Reviews Cancer.

[155]  H. Nishimatsu,et al.  Adrenomedullin Induces Endothelium-Dependent Vasorelaxation via the Phosphatidylinositol 3-Kinase/Akt-Dependent Pathway in Rat Aorta , 2001, Circulation research.

[156]  R Bicknell,et al.  Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth , 2001, Oncogene.

[157]  J. Cusack,et al.  Control of inducible chemoresistance: Enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB , 1999, Nature Medicine.

[158]  M. Lambert,et al.  Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-α , 1997, Nature.

[159]  Nicole Nelson,et al.  A metalloproteinase disintegrin that releases tumour-necrosis factor-α from cells , 1997, Nature.

[160]  Kahkashan Perveen,et al.  Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment , 2017, Asian Pacific journal of cancer prevention : APJCP.

[161]  F. Dequiedt,et al.  RIP3 antagonizes a TSC2-mediated pro-survival pathway in glioblastoma cell death. , 2017, Biochimica et biophysica acta. Molecular cell research.

[162]  P. ten Dijke,et al.  Targeting TGF-β Signaling in Cancer. , 2017, Trends in cancer.

[163]  Feng Wang,et al.  Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma , 2016, Journal of Neuro-Oncology.

[164]  X. Wang,et al.  Role of micro-RNA (miRNA) in pathogenesis of glioblastoma. , 2015, European review for medical and pharmacological sciences.

[165]  Y. Minami,et al.  Insight into the role of Wnt5a-induced signaling in normal and cancer cells. , 2015, International review of cell and molecular biology.

[166]  M. Kudo,et al.  p38α inhibits liver fibrogenesis and consequent hepatocarcinogenesis by curtailing accumulation of reactive oxygen species. , 2013, Cancer research.

[167]  Do-Hyun Nam,et al.  Prognostic significance of c‐Met expression in glioblastomas , 2009, Cancer.

[168]  Jia Luo Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. , 2009, Cancer letters.

[169]  V. N. Balaji,et al.  GSK3beta: a master switch and a promising target. , 2008, Expert opinion on therapeutic targets.

[170]  E. Cohen-Jonathan-Moyal,et al.  Activation of RhoB by hypoxia controls hypoxia-inducible factor-1alpha stabilization through glycogen synthase kinase-3 in U87 glioblastoma cells. , 2006, Cancer research.

[171]  C. Blobel,et al.  ADAMs: key components in EGFR signalling and development , 2005, Nature Reviews Molecular Cell Biology.

[172]  M. Toi,et al.  Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. , 2005, Nature reviews. Cancer.

[173]  S. Ghosh,et al.  A subclass of Ras proteins that regulate the degradation of IkappaB. , 2000, Science.