A Series Expansion for the Time Autocorrelation of Dynamical Variables

We present here a general iterative formula which gives a (formal) series expansion for the time autocorrelation of smooth dynamical variables, for all Hamiltonian systems endowed with an invariant measure. We add some criteria, theoretical in nature, which enable one to decide whether the decay of the correlations is exponentially fast or not. One of these criteria is implemented numerically for the case of the Fermi-Pasta-Ulam system, and we find indications which might suggest a sub-exponential decay of the time autocorrelation of a relevant dynamical variable.

[1]  F. Hausdorff,et al.  Momentprobleme für ein endliches Intervall. , 1923 .

[2]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. V. Widder,et al.  The Laplace Transform , 1943 .

[4]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[5]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[6]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[7]  M. G. Kreĭn,et al.  Some questions in the theory of moments , 1962 .

[8]  N. Obreshkov Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .

[9]  C. Rheinboldt N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .

[10]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[11]  Anwendungen der Laplace-Transformation , 1972 .

[12]  D. Ruelle,et al.  Resonances of chaotic dynamical systems. , 1986, Physical review letters.

[13]  B. M. Fulk MATH , 1992 .

[14]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[15]  Lothar Papula Anwendungen der Laplace-Transformation , 2000 .

[16]  C. Liverani On contact Anosov flows , 2004 .

[17]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[18]  Ben Parker Chaotic Billiards , 2006 .

[19]  L. Galgani,et al.  Fermi-Pasta-Ulam phenomenon for generic initial data. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  A. Carati An Averaging Theorem for Hamiltonian Dynamical Systems in the Thermodynamic Limit , 2007 .

[21]  A. Carati,et al.  Relaxation Times for Hamiltonian Systems , 2009, 0904.1322.

[22]  A. Giorgilli,et al.  Extensive Adiabatic Invariants for Nonlinear Chains , 2012 .

[23]  A. Carati,et al.  Exponentially Long Stability Times for a Nonlinear Lattice in the Thermodynamic Limit , 2010, 1011.5846.