A Series Expansion for the Time Autocorrelation of Dynamical Variables
暂无分享,去创建一个
[1] F. Hausdorff,et al. Momentprobleme für ein endliches Intervall. , 1923 .
[2] B. O. Koopman,et al. Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[3] D. V. Widder,et al. The Laplace Transform , 1943 .
[4] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[5] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[6] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[7] M. G. Kreĭn,et al. Some questions in the theory of moments , 1962 .
[8] N. Obreshkov. Verteilung und Berechnung der Nullstellen reeller Polynome , 1963 .
[9] C. Rheinboldt. N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome. (Hochschulbücher für Mathematik, Band 55) VIII + 296 S. mit 2 Abb. Berlin 1963. Deutscher Verlag der Wissenschaften. Preis geb. DM 43,50 , 1966 .
[10] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[11] Anwendungen der Laplace-Transformation , 1972 .
[12] D. Ruelle,et al. Resonances of chaotic dynamical systems. , 1986, Physical review letters.
[13] B. M. Fulk. MATH , 1992 .
[14] T. Stieltjes. Recherches sur les fractions continues , 1995 .
[15] Lothar Papula. Anwendungen der Laplace-Transformation , 2000 .
[16] C. Liverani. On contact Anosov flows , 2004 .
[17] Ericka Stricklin-Parker,et al. Ann , 2005 .
[18] Ben Parker. Chaotic Billiards , 2006 .
[19] L. Galgani,et al. Fermi-Pasta-Ulam phenomenon for generic initial data. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] A. Carati. An Averaging Theorem for Hamiltonian Dynamical Systems in the Thermodynamic Limit , 2007 .
[21] A. Carati,et al. Relaxation Times for Hamiltonian Systems , 2009, 0904.1322.
[22] A. Giorgilli,et al. Extensive Adiabatic Invariants for Nonlinear Chains , 2012 .
[23] A. Carati,et al. Exponentially Long Stability Times for a Nonlinear Lattice in the Thermodynamic Limit , 2010, 1011.5846.