Homogenization for conductive thin layers of pre-fractal type

The aim of this work is to obtain convergence results for the solutions of transmission problems across highly conductive layers of pre-fractal type from the point of view of homogenization. We prove the M-convergence of the energy functionals to an energy functional which incorporates a singular term, supported within the layer. From the convergence of the energy functionals we deduce the convergence of the approximating solutions to the limit solution in a suitable sense.

[1]  U. Mosco,et al.  A Saint-Venant type principle for Dirichlet forms on discontinuous media , 1995 .

[2]  Maria Rosaria Lancia,et al.  A Transmission Problem with a Fractal Interface , 2002 .

[3]  David Jerison,et al.  The Neumann problem on Lipschitz domains , 1981 .

[4]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[5]  Umberto Mosco,et al.  An Example of Fractal Singular Homogenization , 2007 .

[6]  H. Attouch Variational convergence for functions and operators , 1984 .

[7]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[8]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[9]  Gunter H. Meyer,et al.  On Diffusion in a Fractured Medium , 1971 .

[10]  H. Kardestuncer,et al.  Finite element handbook , 1987 .

[11]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[12]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[13]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[14]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[15]  E. Sanchez-Palencia,et al.  Phénomènes de transmission à travers des couches minces de conductivitéélevée , 1974 .

[16]  Harnack inequalities for fuchsian type weighted elliptic equations , 1996 .

[17]  Umberto Mosco,et al.  Composite media and asymptotic dirichlet forms , 1994 .