Stretch-flangeability of strong multiphase steels

Abstract Stretch-flangeability measures the ability of a material to form into a complex shape. The parameter is often related to simple properties derived from tensile tests. An attempt is made here to discover the best way to exploit tensile test data to indicate flangeabilty. It is found that the ultimate tensile strength of steel is the single most important criterion that correlates with stretch-flangeability.

[1]  David J. C. MacKay,et al.  Estimation of mechanical properties of ferritic steel welds. Part 1: Yield and tensile strength , 2000 .

[2]  Tsutomu Iida,et al.  Stretch-flangeability of a High-strength TRIP Type Bainitic Sheet Steel , 2000 .

[3]  David J. C. MacKay,et al.  Theoretical design of ferritic creep resistant steels using neural network, kinetic, and thermodynamic models , 1999 .

[4]  O. Matsumura,et al.  Effect of Retained Austenite on Formability of High Strength Sheet Steels , 1992 .

[5]  A. Kanda,et al.  Ductility and Formability of Newly Developed High Strength Low Alloy TRIP-aided Sheet Steels with Annealed Martensite Matrix , 2002 .

[6]  Z. Fan,et al.  Effects of tempering temperature on tensile and hole expansion properties of a C–Mn steel , 2003 .

[7]  A. Nagasaka,et al.  Effects of Retained Austenite Parameters on Warm Stretch-flangeability in TRIP-aided Dual-phase Sheet Steels , 1999 .

[8]  Kiyotaka Nakano,et al.  Retained austenite characteristics and stretch-flangeability of high-strength low-alloy TRIP type bainitic sheet steels , 2002 .

[9]  T. Sourmail,et al.  New approach for the bainite start temperature calculation in steels , 2005 .

[10]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[11]  Toshiaki Urabe,et al.  Effects of Microstructure on Stretch-flange-formability of 980 MPa Grade Cold-rolled Ultra High Strength Steel Sheets , 2004 .

[12]  Francisca García Caballero,et al.  Determination of Ms Temperature in Steels: A Bayesian Neural Network Model , 2002 .

[13]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[14]  H. K. D. H. Bhadeshia,et al.  Neural Networks in Materials Science , 1999 .

[15]  H. K. D. H. Bhadeshia,et al.  Neural network analysis of strength and ductility of welding alloys for high strength low alloy shipbuilding steels , 2001 .

[16]  Neural network model for improvement of strength–ductility compromise in low carbon sheet steels , 2006 .

[17]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[18]  David J. C. MacKay,et al.  Estimation of mechanical properties of ferritic steel welds. Part 2: Elongation and Charpy toughness , 2000 .

[19]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[20]  P. Evans,et al.  The relationships between tensile properties and hole expansion property of C-Mn steels , 2003 .

[21]  L. Goddard Information Theory , 1962, Nature.

[22]  C. Capdevila,et al.  Analysis of effect of alloying elements on martensite start temperature of steels , 2003 .

[23]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[24]  Mitsuyuki Kobayashi,et al.  Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels , 1992 .

[25]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[26]  H. Bhadeshia,et al.  TRIP-Assisted Steels? , 2002 .

[27]  Djc MacKay,et al.  Neural network analysis of steel plate processing , 1998 .

[28]  H. K. D. H. Bhadeshia,et al.  Estimation of the γ and γ' lattice parameters in nickel-base superalloys using neural network analysis , 1998 .

[29]  Thomas Sourmail,et al.  A model for predicting the Ms temperatures of steels , 2005 .