Alternating groups and flag-transitive triplanes

Let $${\mathcal{D}}$$ be a nontrivial triplane, and G be a subgroup of the full automorphism group of $${\mathcal{D}}$$. In this paper we prove that if $${\mathcal{D}}$$ is a triplane, $${G\leq Aut(\mathcal{D})}$$ is flag-transitive, point-primitive and Soc(G) is an alternating group, then $${\mathcal{D}}$$ is the projective space PG2(3, 2), and $${G\cong A_7}$$ with the point stabiliser $${G_x\cong PSL_3(2)}$$.

[1]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type , 2008 .

[2]  Cheryl E. Praeger,et al.  Imprimitive flag-transitive symmetric designs , 2006, J. Comb. Theory, Ser. A.

[3]  Shenglin Zhou,et al.  Sporadic groups and flag-transitive triplanes , 2009 .

[4]  Martin W. Liebeck,et al.  The Primitive Permutation Groups of Odd Degree , 1985 .

[5]  Cheryl E. Praeger,et al.  On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[6]  Cheryl E. Praeger The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair , 2007, Des. Codes Cryptogr..

[7]  J. Dixon,et al.  Permutation Groups , 1996 .

[8]  Shenglin Zhou,et al.  Finite classical groups and flag-transitive triplanes , 2009, Discret. Math..

[9]  Eugenia O'Reilly Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle , 2005, Eur. J. Comb..

[10]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[11]  B. Huppert Endliche Gruppen I , 1967 .

[12]  Michael Aschbacher,et al.  On Collineation Groups of Symmetric Block Designs , 1971, J. Comb. Theory, Ser. A.

[13]  Eugenia O'Reilly Regueiro On primitivity and reduction for flag-transitive symmetric designs , 2005, J. Comb. Theory A.

[14]  A. Delandtsheer Finite Flag-transitive Linear Spaces with Alternating Socle , 2001 .

[15]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle , 2007 .

[16]  Shenglin Zhou,et al.  Exceptional groups of Lie type and flag-transitive triplanes , 2010 .

[17]  P. Dembowski Finite geometries , 1997 .

[18]  William M. Kantor,et al.  Classification of 2-transitive symmetric designs , 1985, Graphs Comb..