On the mechanism of urea-induced titania modification.

The mechanism of surface modification of titania by calcination with urea at 400 degrees C was investigated by substituting urea by its thermal decomposition products. It was found that during the urea-induced process titania acts as a thermal catalyst for the conversion of intermediate isocyanic acid to cyanamide. Trimerization of the latter produces melamine followed by polycondensation to melem- and melon-based poly(aminotri-s-triazine) derivatives. Subsequently, amino groups of the latter finish the process by formation of Ti--N bonds through condensation with the OH-terminated titania surface. When the density of these groups is too low, like in substoichiometric titania, no corresponding modification occurs. The mechanistic role of the polytriazine component depends on its concentration. If present in only a small amount, it acts as a molecular photosensitizer. At higher amounts it forms a crystalline semiconducting organic layer, chemically bound to titania. In this case the system represents a unique example of a covalently coupled inorganic-organic semiconductor photocatalyst. Both types of material exhibit the quasi-Fermi level of electrons slightly anodically shifted relative to that of titania. They are all active in the visible-light mineralization of formic acid, whereas nitrogen-modified titania prepared from ammonia is inactive.

[1]  OhnoTeruhisa,et al.  Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light , 2003 .

[2]  N. Serpone,et al.  Photoinduced Coloration and Photobleaching of Titanium Dioxide in TiO2/Polymer Compositions upon UV- and Visible-Light Excitation of Color Centers' Absorption Bands: Direct Experimental Evidence Negating Band-Gap Narrowing in Anion-/Cation-Doped TiO2s , 2007 .

[3]  A. Schmidt Herstellung von Melamin aus Harnstoff bei Atmosphärendruck , 1966 .

[4]  Chunzhong Li,et al.  Electrorheological behavior of urea-doped mesoporous TiO2 suspensions , 2006 .

[5]  J. Yates,et al.  TiO2-based Photocatalysis: Surface Defects, Oxygen and Charge Transfer , 2005 .

[6]  Jinlong Zhang,et al.  Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity , 2007 .

[7]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[8]  H. Tributsch,et al.  Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies , 2007 .

[9]  Gobinda Chandra De,et al.  Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement , 1995 .

[10]  Annabella Selloni,et al.  Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. , 2005, The journal of physical chemistry. B.

[11]  T. Komatsu,et al.  Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides , 2001 .

[12]  T. Komatsu The First Synthesis and Characterization of Cyameluric High Polymers , 2001 .

[13]  van de Mcm Richard Sanden,et al.  X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films , 2000 .

[14]  K. Zakrzewska,et al.  Nitrogen-doped titanium dioxideCharacterization of structural and optical properties , 2009 .

[15]  J. Bao,et al.  Photocatalytic Activity of (Copper, Nitrogen)-Codoped Titanium Dioxide Nanoparticles , 2008 .

[16]  A. Emeline,et al.  Photoinduced Formation of Defects and Nitrogen Stabilization of Color Centers in N-Doped Titanium Dioxide , 2007 .

[17]  A. V. Emeline,et al.  Visible-Light-Active Titania Photocatalysts: The Case of N-Doped s—Properties and Some Fundamental Issues , 2008 .

[18]  H. García,et al.  Enhanced photocatalytic activity of zeolite-encapsulated TiO2 clusters by complexation with organic additives and N-doping. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  Jung-Yup Lee,et al.  Electronic properties of N- and C-doped TiO2 , 2005 .

[20]  M. Seery,et al.  Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst , 2007 .

[21]  K. Kobayakawa,et al.  Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea , 2005 .

[22]  S. Yin,et al.  Phase-compositional control and visible light photocatalytic activity of nitrogen-doped titania via solvothermal process , 2004 .

[23]  H. Kisch,et al.  Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Dong Yang,et al.  Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity , 2007 .

[25]  W. Schnick,et al.  Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer. , 2007, Chemistry.

[26]  V. Nadtochenko,et al.  Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. , 2005, The journal of physical chemistry. B.

[27]  Xiaojing Yang,et al.  Urea coordinated titanium trichloride Ti(III)[OC(NH)2]6Cl3: a single molecular precursor yielding highly visible light responsive TiO2 nanocrystallites. , 2006, The journal of physical chemistry. B.

[28]  T. Morikawa,et al.  Deep-level optical spectroscopy investigation of N-doped TiO2 films , 2005 .

[29]  F. Saito,et al.  Low temperature synthesis of TiO2−xNy powders and films with visible light responsive photocatalytic activity , 2006 .

[30]  R. Zuhr,et al.  Formation of C–N thin films by ion beam deposition , 1995 .

[31]  Jianwei Shi,et al.  Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride , 2006 .

[32]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[33]  Claes-Göran Granqvist,et al.  Photoelectrochemical study of sputtered nitrogen-doped titanium dioxide thin films in aqueous electrolyte , 2004 .

[34]  N. Serpone,et al.  Visible light absorption by various titanium dioxide specimens. , 2006, The journal of physical chemistry. B.

[35]  N. Ohashi,et al.  Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants , 2005 .

[36]  Shinri Sato,et al.  Photocatalytic activity of NOx-doped TiO2 in the visible light region , 1986 .

[37]  F. Saito,et al.  Preparation of Visible Light-Activated Titania Photocatalyst by Mechanochemical Method , 2003 .

[38]  B. L. Maschhoff,et al.  Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities , 1992 .

[39]  Toshiki Tsubota,et al.  Degradation of Methylene Blue on Carbonate Species-doped TiO2 Photocatalysts under Visible Light , 2004 .

[40]  C. Mo,et al.  Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium , 2008 .

[41]  M. Antonietti,et al.  Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light , 2009 .

[42]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[43]  Zhengyou Liu,et al.  Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects , 2008 .

[44]  H. Kisch,et al.  Zur Natur von Stickstoff‐modifiziertem Titandioxid für die Photokatalyse mit sichtbarem Licht , 2008 .

[45]  J. P. Lewis,et al.  Second-generation photocatalytic materials: anion-doped TiO2 , 2005 .

[46]  G. Pacchioni,et al.  First principles study of nitrogen doping at the anatase TiO2(101) surface , 2007 .

[47]  Jinbao Wan,et al.  Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process , 2008 .

[48]  S. Rodrigues,et al.  Structural defects cause TiO2-based photocatalysts to be active in visible light. , 2004, Chemical communications.

[49]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[50]  T. Morikawa,et al.  Band-gap narrowing of TiO2 films induced by N-doping , 2006 .

[51]  S. Yin,et al.  Visible-light-induced photocatalytic activity of TiO2−xNy prepared by solvothermal process in urea–alcohol system , 2006 .

[52]  H. Kisch,et al.  Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 , 2004 .

[53]  R. Asahi,et al.  Band-Gap Narrowing of Titanium Dioxide by Nitrogen Doping , 2001 .

[54]  Horst Kisch,et al.  The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. , 2008, Angewandte Chemie.

[55]  G. Pacchioni,et al.  Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. , 2006, Journal of the American Chemical Society.

[56]  P. Cheng,et al.  Effect of urea on the photoactivity of titania powder prepared by sol–gel method , 2008 .

[57]  H. Kisch,et al.  A Low-Band Gap, Nitrogen-Modified Titania Visible-Light Photocatalyst , 2007 .

[58]  Junichi Nishino,et al.  Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds , 2005 .

[59]  Yuexiang Li,et al.  Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution , 2008 .

[60]  W. Schnick,et al.  Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. , 2003, Journal of the American Chemical Society.

[61]  P. Delorme,et al.  Etude des produits de decomposition thermique de l'ion guanidinium par spectrometrie infrarouge , 1980 .

[62]  F. Saito,et al.  Visible light induced paramagnetic sites in nitrogen-doped TiO2 prepared by a mechanochemical method , 2006 .

[63]  M. Hoffmann,et al.  Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination , 2004 .

[64]  J. Yates,et al.  The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals , 2004 .

[65]  Jun Ren,et al.  Preparation of PS/TiO2/UF multilayer core-shell hybrid microspheres with high stability. , 2009, Journal of colloid and interface science.

[66]  Yi Xie,et al.  Synthesis of carbon nitride nanotubes with the C(3)N(4) stoichiometry via a benzene-thermal process at low temperatures. , 2004, Chemical communications.

[67]  M. Chinn,et al.  Polymerisation of cyanogen on graphite and graphite supported copper films , 2002 .

[68]  S. Chavadej,et al.  Use of Pt/N-doped mesoporous-assembled nanocrystalline TiO2 for photocatalytic H2 production under visible light irradiation , 2009 .

[69]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[70]  Ryuhei Nakamura,et al.  Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes , 2004 .

[71]  Zhong‐Yong Yuan,et al.  Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2−xNx , 2008 .

[72]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[73]  M. Kuhn,et al.  Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .

[74]  J. Liebig Uber einige Stickstoff ‐ Verbindungen , 1834 .

[75]  P. Falaras,et al.  Nitrogen modified nanostructured titania: electronic, structural and visible‐light photocatalytic properties , 2008 .

[76]  Ke Yang,et al.  Preparation of Nb2O5 and N co-doped TiO2 photocatalysts and their enhanced photocatalytic activities under visible light , 2008 .

[77]  Zhongbiao Wu,et al.  Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition. , 2009, Journal of hazardous materials.

[78]  S. Yin,et al.  Visible-light induced photocatalytic activity of TiO2−xAy (A = N, S) prepared by precipitation route , 2006 .

[79]  Michael R. Hoffmann,et al.  Visible-light photoactivity of nitrogen-doped TiO2 : Photo-oxidation of HCO2H to CO2 and H2O , 2007 .

[80]  Claes-Göran Granqvist,et al.  Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation , 2004 .

[81]  Y. Irokawa,et al.  Photodegradation of toluene over TiO(2-x)N(x) under visible light irradiation. , 2006, Physical chemistry chemical physics : PCCP.

[82]  H. Kisch,et al.  Tuning the optical and photoelectrochemical properties of surface-modified TiO_2 , 2008, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[83]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[84]  D. Raftery,et al.  15N Solid State NMR and EPR Characterization of N-Doped TiO2 Photocatalysts , 2007 .

[85]  H. Ehrenberg,et al.  The tautomeric forms of cyameluric acid derivatives. , 2007, Chemistry.

[86]  S. Yin,et al.  Synthesis of excellent visible-light responsive TiO2−xNy photocatalyst by a homogeneous precipitation-solvothermal process , 2005 .

[87]  Dong‐Wan Kim,et al.  Preparation of Brookite‐Type TiO2/Carbon Nanocomposite Electrodes for Application to Li Ion Batteries , 2008 .

[88]  G. Pacchioni,et al.  Origin of the different photoactivity of N-doped anatase and rutile TiO2 , 2004 .

[89]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[90]  Clemens Burda,et al.  Chemically synthesized nitrogen-doped metal oxide nanoparticles , 2007 .