Deep Learning Methods for Small Molecule Drug Discovery: A Survey

With the development of computer-assisted techniques, research communities including biochemistry and deep learning have been devoted into the drug discovery field for over a decade. Various applications of deep learning have drawn great attention in drug discovery, such as molecule generation, molecular property prediction, retrosynthesis prediction, and reaction prediction. While most existing surveys only focus on one of the applications, limiting the view of researchers in the community. In this paper, we present a comprehensive review on the aforementioned four aspects, and discuss the relationships among different applications. The latest literature and classical benchmarks are presented for better understanding the development of variety of approaches. We commence by summarizing the molecule representation format in these works, followed by an introduction of recent proposed approaches for each of the four tasks. Furthermore, we review a variety of commonly used datasets and evaluation metrics and compare the performance of deep learning-based models. Finally, we conclude by identifying remaining challenges and discussing the future trend for deep learning methods in drug discovery.

[1]  R. Nussinov,et al.  Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework , 2022, Nature Machine Intelligence.

[2]  G. Varoquaux,et al.  Why do tree-based models still outperform deep learning on tabular data? , 2022, ArXiv.

[3]  Shengchao Liu,et al.  MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design , 2022, ArXiv.

[4]  W. Matusik,et al.  Data-Efficient Graph Grammar Learning for Molecular Generation , 2022, ICLR.

[5]  S. Ermon,et al.  GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation , 2022, ICLR.

[6]  Amarda Shehu,et al.  Interpretable Molecular Graph Generation via Monotonic Constraints , 2022, SDM.

[7]  Stan Z. Li,et al.  SemiRetro: Semi-template framework boosts deep retrosynthesis prediction , 2022, ArXiv.

[8]  Tao Qin,et al.  Direct Molecular Conformation Generation , 2022, Trans. Mach. Learn. Res..

[9]  Chang-Yu Hsieh,et al.  Retroformer: Pushing the Limits of Interpretable End-to-end Retrosynthesis Transformer , 2022, ICML.

[10]  Chunyan Li,et al.  A Novel Molecular Representation Learning for Molecular Property Prediction with a Multiple SMILES-Based Augmentation , 2022, Comput. Intell. Neurosci..

[11]  Marwin H. S. Segler,et al.  Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks , 2022, J. Chem. Inf. Model..

[12]  Vijay Prakash Dwivedi,et al.  Graph Neural Networks with Learnable Structural and Positional Representations , 2021, ICLR.

[13]  Shengchao Liu,et al.  Pre-training Molecular Graph Representation with 3D Geometry , 2021, ICLR.

[14]  Gjergji Kasneci,et al.  Deep Neural Networks and Tabular Data: A Survey , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[15]  Dejing Dou,et al.  GeomGCL: Geometric Graph Contrastive Learning for Molecular Property Prediction , 2021, AAAI.

[16]  Xiangxiang Zeng,et al.  Deep learning in retrosynthesis planning: datasets, models and tools , 2021, Briefings Bioinform..

[17]  Jimeng Sun,et al.  Differentiable Scaffolding Tree for Molecular Optimization , 2021, ICLR.

[18]  Dimitris Samaras,et al.  Artificial Intelligence in Drug Discovery: Applications and Techniques , 2021, Briefings Bioinform..

[19]  Samuel C. Hoffman,et al.  Augmenting Molecular Deep Generative Models with Topological Data Analysis Representations , 2021, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[20]  James B. Brown,et al.  Spatial Graph Attention and Curiosity-driven Policy for Antiviral Drug Discovery , 2021, ICLR.

[21]  Marc Brockschmidt,et al.  Learning to Extend Molecular Scaffolds with Structural Motifs , 2021, ICLR.

[22]  Amir Barati Farimani,et al.  Molecular contrastive learning of representations via graph neural networks , 2021, Nature Machine Intelligence.

[23]  Simon Axelrod,et al.  GEOM: Energy-annotated molecular conformations for property prediction and molecular generation , 2020, ArXiv.

[24]  S. Ji,et al.  Spherical Message Passing for 3D Molecular Graphs , 2022, ICLR.

[25]  Saiveth Hernández-Hernández Conformal prediction of small-molecule drug resistance in cancer cell lines , 2022 .

[26]  Shuiwang Ji,et al.  An Autoregressive Flow Model for 3D Molecular Geometry Generation from Scratch , 2022, ICLR.

[27]  Wesley Wei Qian,et al.  Energy-Inspired Molecular Conformation Optimization , 2022, ICLR.

[28]  Guojie Song,et al.  Deep Molecular Representation Learning via Fusing Physical and Chemical Information , 2021, NeurIPS.

[29]  Davronov Rifqat Rahimovich,et al.  Predicting the activity and properties of chemicals based on RoBERTa , 2021, 2021 International Conference on Information Science and Communications Technologies (ICISCT).

[30]  Sung Ju Hwang,et al.  Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Generation , 2021, NeurIPS.

[31]  Hualiang Jiang,et al.  Generative Models for De Novo Drug Design. , 2021, Journal of medicinal chemistry.

[32]  Sanjar Adilov,et al.  Generative Pre-Training from Molecules , 2021 .

[33]  Shuan Chen,et al.  Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention , 2021, JACS Au.

[34]  Christian V. Stevens,et al.  Machine Learning in Chemical Engineering: Strengths, Weaknesses, Opportunities, and Threats , 2021, Engineering.

[35]  Jian Tang,et al.  Non-Autoregressive Electron Redistribution Modeling for Reaction Prediction , 2021, ICML.

[36]  Taufiq Rahman,et al.  Recent progress on the prospective application of machine learning to structure-based virtual screening. , 2021, Current opinion in chemical biology.

[37]  Jinwoo Shin,et al.  GTA: Graph Truncated Attention for Retrosynthesis , 2021, AAAI.

[38]  Jian Tang,et al.  An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming , 2021, ICML.

[39]  Jian Tang,et al.  Learning Gradient Fields for Molecular Conformation Generation , 2021, ICML.

[40]  Guojie Song,et al.  HamNet: Conformation-Guided Molecular Representation with Hamiltonian Neural Networks , 2021, ICLR.

[41]  Pravir Kumar,et al.  Artificial intelligence to deep learning: machine intelligence approach for drug discovery , 2021, Molecular Diversity.

[42]  Weinan Zhang,et al.  MARS: Markov Molecular Sampling for Multi-objective Drug Discovery , 2021, ICLR.

[43]  AkshatKumar Nigam,et al.  Assigning confidence to molecular property prediction , 2021, Expert opinion on drug discovery.

[44]  Jos'e Miguel Hern'andez-Lobato,et al.  Symmetry-Aware Actor-Critic for 3D Molecular Design , 2020, ICLR.

[45]  Benjamin A. Shoemaker,et al.  PubChem in 2021: new data content and improved web interfaces , 2020, Nucleic Acids Res..

[46]  Alain C. Vaucher,et al.  Inferring experimental procedures from text-based representations of chemical reactions , 2020, Nature Communications.

[47]  Stanislaw Jastrzebski,et al.  Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of Graph Edits , 2020, J. Chem. Inf. Model..

[48]  Connor W. Coley,et al.  Learning Graph Models for Retrosynthesis Prediction , 2020, NeurIPS.

[49]  Le Song,et al.  Molecule Optimization by Explainable Evolution , 2021, ICLR.

[50]  Marwin H. S. Segler,et al.  FS-Mol: A Few-Shot Learning Dataset of Molecules , 2021, NeurIPS Datasets and Benchmarks.

[51]  Hua Wu,et al.  CELLS: Cost-Effective Evolution in Latent Space for Goal-Directed Molecular Generation , 2021, ArXiv.

[52]  Y. Bengio,et al.  Learning Neural Generative Dynamics for Molecular Conformation Generation , 2021, ICLR.

[53]  Thierry Langer,et al.  A compact review of molecular property prediction with graph neural networks. , 2020, Drug discovery today. Technologies.

[54]  Ola Engkvist,et al.  Uncertainty quantification in drug design. , 2020, Drug discovery today.

[55]  Zhangyang Wang,et al.  Graph Contrastive Learning with Augmentations , 2020, NeurIPS.

[56]  Bharath Ramsundar,et al.  ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction , 2020, ArXiv.

[57]  Brian Hie,et al.  Leveraging Uncertainty in Machine Learning Accelerates Biological Discovery and Design. , 2020, Cell systems.

[58]  Paul Rayson,et al.  BOSS: Bayesian Optimization over String Spaces , 2020, NeurIPS.

[59]  Katsuhiko Ishiguro,et al.  Data Transfer Approaches to Improve Seq-to-Seq Retrosynthesis , 2020, ArXiv.

[60]  Regina Barzilay,et al.  Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning , 2020, Chemical science.

[61]  Bo Dai,et al.  Energy-based View of Retrosynthesis , 2020, ArXiv.

[62]  Enhong Chen,et al.  ASGN: An Active Semi-supervised Graph Neural Network for Molecular Property Prediction , 2020, KDD.

[63]  Gisbert Schneider,et al.  Drug discovery with explainable artificial intelligence , 2020, Nature Machine Intelligence.

[64]  Le Song,et al.  Retro*: Learning Retrosynthetic Planning with Neural Guided A* Search , 2020, ICML.

[65]  Yatao Bian,et al.  Self-Supervised Graph Transformer on Large-Scale Molecular Data , 2020, NeurIPS.

[66]  Yang Yu,et al.  RetroXpert: Decompose Retrosynthesis Prediction like a Chemist , 2020, NeurIPS.

[67]  Regina Barzilay,et al.  Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis , 2020, Journal of medicinal chemistry.

[68]  Jian Tang,et al.  A Graph to Graphs Framework for Retrosynthesis Prediction , 2020, ICML.

[69]  Riccardo Petraglia,et al.  Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy† , 2020, Chemical science.

[70]  Stanislaw Jastrzebski,et al.  Molecule Attention Transformer , 2020, ArXiv.

[71]  Regina Barzilay,et al.  Multi-Objective Molecule Generation using Interpretable Substructures , 2020, ICML.

[72]  T. Jaakkola,et al.  Hierarchical Generation of Molecular Graphs using Structural Motifs , 2020, ICML.

[73]  Brian C. Barnes,et al.  Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning , 2020, J. Chem. Inf. Model..

[74]  W Patrick Walters,et al.  Assessing the impact of generative AI on medicinal chemistry , 2020, Nature Biotechnology.

[75]  Weinan Zhang,et al.  GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation , 2020, ICLR.

[76]  Wesley Wei Qian,et al.  Integrating Deep Neural Networks and Symbolic Inference for Organic Reactivity Prediction , 2020 .

[77]  Francesca Grisoni,et al.  Bidirectional Molecule Generation with Recurrent Neural Networks , 2020, J. Chem. Inf. Model..

[78]  J. Reymond,et al.  Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc04944d , 2019, Chemical science.

[79]  Alán Aspuru-Guzik,et al.  Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space , 2019, ICLR.

[80]  José Miguel Hernández-Lobato,et al.  A Generative Model for Molecular Distance Geometry , 2019, ICML.

[81]  Kirthevasan Kandasamy,et al.  ChemBO: Bayesian Optimization of Small Organic Molecules with Synthesizable Recommendations , 2019, AISTATS.

[82]  Jian Tang,et al.  InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization , 2019, ICLR.

[83]  Yuedong Yang,et al.  Predicting Retrosynthetic Reaction using Self-Corrected Transformer Neural Networks , 2019, ArXiv.

[84]  J. Leskovec,et al.  Strategies for Pre-training Graph Neural Networks , 2019, ICLR.

[85]  Kam‐Heung Sze,et al.  Machine‐learning scoring functions for structure‐based virtual screening , 2020, WIREs Computational Molecular Science.

[86]  Le Song,et al.  Retrosynthesis Prediction with Conditional Graph Logic Network , 2020, NeurIPS.

[87]  Sepp Hochreiter,et al.  On failure modes in molecule generation and optimization. , 2019, Drug discovery today. Technologies.

[88]  Shion Honda,et al.  SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery , 2019, ArXiv.

[89]  Shuigeng Zhou,et al.  TOP: Towards Better Toxicity Prediction by Deep Molecular Representation Learning , 2019, 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[90]  Alexandra Bomane,et al.  Paclitaxel Response Can Be Predicted With Interpretable Multi-Variate Classifiers Exploiting DNA-Methylation and miRNA Data , 2019, Front. Genet..

[91]  Alpha A Lee,et al.  Molecular Transformer unifies reaction prediction and retrosynthesis across pharma chemical space. , 2019, Chemical communications.

[92]  Regina Barzilay,et al.  Learning to Make Generalizable and Diverse Predictions for Retrosynthesis , 2019, ArXiv.

[93]  Alok Choudhary,et al.  Property Prediction of Organic Donor Molecules for Photovoltaic Applications Using Extremely Randomized Trees , 2019, Molecular informatics.

[94]  Junzhou Huang,et al.  SMILES-BERT: Large Scale Unsupervised Pre-Training for Molecular Property Prediction , 2019, BCB.

[95]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[96]  Rafael Gómez-Bombarelli,et al.  Generative Models for Automatic Chemical Design , 2019, Machine Learning Meets Quantum Physics.

[97]  Qi Liu,et al.  Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective , 2019, AAAI.

[98]  Shengyu Zhang,et al.  Utilizing Edge Features in Graph Neural Networks via Variational Information Maximization , 2019, ArXiv.

[99]  Christopher A. Hunter,et al.  Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction , 2018, ACS central science.

[100]  Artem Cherkasov,et al.  All SMILES Variational Autoencoder , 2019, 1905.13343.

[101]  Sunghwan Sohn,et al.  Deep learning and alternative learning strategies for retrospective real-world clinical data , 2019, npj Digital Medicine.

[102]  Igor V. Tetko,et al.  A Transformer Model for Retrosynthesis , 2019, ICANN.

[103]  Parantu K. Shah,et al.  Applications of machine learning in drug discovery and development , 2019, Nature Reviews Drug Discovery.

[104]  Elman Mansimov,et al.  Molecular Geometry Prediction using a Deep Generative Graph Neural Network , 2019, Scientific Reports.

[105]  Friedrich Rippmann,et al.  Interpretable Deep Learning in Drug Discovery , 2019, Explainable AI.

[106]  Nicholas A Cilfone,et al.  Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification , 2019, J. Chem. Inf. Model..

[107]  Svetha Venkatesh,et al.  Graph Transformation Policy Network for Chemical Reaction Prediction , 2018, KDD.

[108]  Marwin H. S. Segler,et al.  GuacaMol: Benchmarking Models for De Novo Molecular Design , 2018, J. Chem. Inf. Model..

[109]  Li Li,et al.  Optimization of Molecules via Deep Reinforcement Learning , 2018, Scientific Reports.

[110]  Connor W. Coley,et al.  A graph-convolutional neural network model for the prediction of chemical reactivity , 2018, Chemical science.

[111]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[112]  Regina Barzilay,et al.  Learning Multimodal Graph-to-Graph Translation for Molecular Optimization , 2018, ICLR.

[113]  Pietro Liò,et al.  Deep Graph Infomax , 2018, ICLR.

[114]  Yoshua Bengio,et al.  Learning deep representations by mutual information estimation and maximization , 2018, ICLR.

[115]  Yingyu Liang,et al.  N-Gram Graph: Simple Unsupervised Representation for Graphs, with Applications to Molecules , 2018, NeurIPS.

[116]  Matt J. Kusner,et al.  A Generative Model For Electron Paths , 2018, ICLR.

[117]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[118]  Daniel C. Elton,et al.  Deep learning for molecular generation and optimization - a review of the state of the art , 2019, Molecular Systems Design & Engineering.

[119]  Wojciech Samek,et al.  Explainable AI: Interpreting, Explaining and Visualizing Deep Learning , 2019, Explainable AI.

[120]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[121]  E. Pasquier,et al.  Predicting synergism of cancer drug combinations using NCI-ALMANAC data , 2018, bioRxiv.

[122]  Wei-keng Liao,et al.  CheMixNet: Mixed DNN Architectures for Predicting Chemical Properties using Multiple Molecular Representations , 2018, ArXiv.

[123]  Xiaoyu Zhang,et al.  Seq3seq Fingerprint: Towards End-to-end Semi-supervised Deep Drug Discovery , 2018, SIGB.

[124]  Artem Cherkasov,et al.  PADME: A Deep Learning-based Framework for Drug-Target Interaction Prediction , 2018, ArXiv.

[125]  Leroy Cronin,et al.  Designing Algorithms To Aid Discovery by Chemical Robots , 2018, ACS central science.

[126]  Ping Zhang,et al.  Interpretable Drug Target Prediction Using Deep Neural Representation , 2018, IJCAI.

[127]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[128]  Hugo Ceulemans,et al.  Large-scale comparison of machine learning methods for drug target prediction on ChEMBL , 2018, Chemical science.

[129]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.

[130]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[131]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[132]  Constantine Bekas,et al.  “Found in Translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models† †Electronic supplementary information (ESI) available: Time-split test set and example predictions, together with attention weights, confidence and token probabilities. See DO , 2017, Chemical science.

[133]  Petra Schneider,et al.  Generative Recurrent Networks for De Novo Drug Design , 2017, Molecular informatics.

[134]  Eric J. Martin,et al.  In silico generation of novel, drug-like chemical matter using the LSTM neural network , 2017, ArXiv.

[135]  Abhinav Vishnu,et al.  SMILES2Vec: An Interpretable General-Purpose Deep Neural Network for Predicting Chemical Properties , 2017, ArXiv.

[136]  William H. Green,et al.  Computer-Assisted Retrosynthesis Based on Molecular Similarity , 2017, ACS central science.

[137]  Regina Barzilay,et al.  Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network , 2017, NIPS.

[138]  Junzhou Huang,et al.  Seq2seq Fingerprint: An Unsupervised Deep Molecular Embedding for Drug Discovery , 2017, BCB.

[139]  Abhinav Vishnu,et al.  Chemception: A Deep Neural Network with Minimal Chemistry Knowledge Matches the Performance of Expert-developed QSAR/QSPR Models , 2017, ArXiv.

[140]  Bowen Liu,et al.  Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models , 2017, ACS central science.

[141]  Esben Jannik Bjerrum,et al.  Molecular Generation with Recurrent Neural Networks (RNNs) , 2017, ArXiv.

[142]  Marwin H. S. Segler,et al.  Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. , 2017, Chemistry.

[143]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[144]  Regina Barzilay,et al.  Prediction of Organic Reaction Outcomes Using Machine Learning , 2017, ACS central science.

[145]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[146]  Lars Carlsson,et al.  ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics , 2017, Journal of Cheminformatics.

[147]  Vijay S. Pande,et al.  MoleculeNet: a benchmark for molecular machine learning , 2017, Chemical science.

[148]  Vijay S. Pande,et al.  Low Data Drug Discovery with One-Shot Learning , 2016, ACS central science.

[149]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[150]  Gregory A Landrum,et al.  What's What: The (Nearly) Definitive Guide to Reaction Role Assignment , 2016, J. Chem. Inf. Model..

[151]  Vijay S. Pande,et al.  Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches , 2016, J. Chem. Inf. Model..

[152]  Alán Aspuru-Guzik,et al.  Neural Networks for the Prediction of Organic Chemistry Reactions , 2016, ACS central science.

[153]  Günter Klambauer,et al.  DeepTox: Toxicity Prediction using Deep Learning , 2016, Front. Environ. Sci..

[154]  Gisbert Schneider,et al.  Deep Learning in Drug Discovery , 2016, Molecular informatics.

[155]  Benjamin Haibe-Kains,et al.  Revisiting inconsistency in large pharmacogenomic studies , 2015, bioRxiv.

[156]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[157]  Izhar Wallach,et al.  AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery , 2015, ArXiv.

[158]  Antonio Lavecchia,et al.  Machine-learning approaches in drug discovery: methods and applications. , 2015, Drug discovery today.

[159]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[160]  Andreas Mayr,et al.  Deep Learning as an Opportunity in Virtual Screening , 2015 .

[161]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[162]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[163]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[164]  Tao Xu,et al.  Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis , 2014, J. Chem. Inf. Model..

[165]  Wannian Zhang,et al.  Fragment Informatics and Computational Fragment‐Based Drug Design: An Overview and Update , 2013, Medicinal research reviews.

[166]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[167]  A. Voet,et al.  Fragment based drug design: from experimental to computational approaches. , 2012, Current medicinal chemistry.

[168]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[169]  Anthony P. F. Cook,et al.  Computer‐aided synthesis design: 40 years on , 2012 .

[170]  Mindy I. Davis,et al.  Comprehensive analysis of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[171]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[172]  P. Hajduk,et al.  Navigating the kinome. , 2011, Nature chemical biology.

[173]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[174]  Ulrich Rester,et al.  From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. , 2008, Current opinion in drug discovery & development.

[175]  Alexander Golbraikh,et al.  QSAR Modeling of the Blood–Brain Barrier Permeability for Diverse Organic Compounds , 2008, Pharmaceutical Research.

[176]  Thierry Langer,et al.  Virtual screening for the discovery of bioactive natural products , 2008, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[177]  Jean-Louis Reymond,et al.  Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery , 2007, J. Chem. Inf. Model..

[178]  Andreas Zell,et al.  Kernel Functions for Attributed Molecular Graphs – A New Similarity‐Based Approach to ADME Prediction in Classification and Regression , 2006 .

[179]  A. Bender,et al.  Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME. , 2006, IDrugs : the investigational drugs journal.

[180]  Jean-Louis Reymond,et al.  Virtual exploration of the small-molecule chemical universe below 160 Daltons. , 2005, Angewandte Chemie.

[181]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[182]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[183]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[184]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[185]  Robert P. Sheridan,et al.  Using a Genetic Algorithm To Suggest Combinatorial Libraries , 1995, J. Chem. Inf. Comput. Sci..

[186]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..