Incremental Variational Sparse Gaussian Process Regression

Recent work on scaling up Gaussian process regression (GPR) to large datasets has primarily focused on sparse GPR, which leverages a small set of basis functions to approximate the full Gaussian process during inference. However, the majority of these approaches are batch methods that operate on the entire training dataset at once, precluding the use of datasets that are streaming or too large to fit into memory. Although previous work has considered incrementally solving variational sparse GPR, most algorithms fail to update the basis functions and therefore perform suboptimally. We propose a novel incremental learning algorithm for variational sparse GPR based on stochastic mirror ascent of probability densities in reproducing kernel Hilbert space. This new formulation allows our algorithm to update basis functions online in accordance with the manifold structure of probability densities for fast convergence. We conduct several experiments and show that our proposed approach achieves better empirical performance in terms of prediction error than the recent state-of-the-art incremental solutions to variational sparse GPR.

[1]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[2]  Roni Khardon,et al.  Sparse Variational Inference for Generalized GP Models , 2015, ICML.

[3]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[4]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[5]  Zoubin Ghahramani,et al.  Local and global sparse Gaussian process approximations , 2007, AISTATS.

[6]  Pascal Fua,et al.  Kullback-Leibler Proximal Variational Inference , 2015, NIPS.

[7]  Yuesheng Xu,et al.  Universal Kernels , 2006, J. Mach. Learn. Res..

[8]  Matthew D. Hoffman,et al.  A trust-region method for stochastic variational inference with applications to streaming data , 2015, ICML.

[9]  Yuan Qi,et al.  Sparse-posterior Gaussian Processes for general likelihoods , 2010, UAI.

[10]  Aníbal R. Figueiras-Vidal,et al.  Inter-domain Gaussian Processes for Sparse Inference using Inducing Features , 2009, NIPS.

[11]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[12]  Lehel Csató,et al.  Sparse On-Line Gaussian Processes , 2002, Neural Computation.

[13]  Neil D. Lawrence,et al.  Sparse Convolved Gaussian Processes for Multi-output Regression , 2008, NIPS.

[14]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[15]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[16]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[17]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[18]  Neil D. Lawrence,et al.  Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.

[19]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[20]  Stefan Schaal,et al.  Incremental Local Gaussian Regression , 2014, NIPS.

[21]  Neil D. Lawrence,et al.  Efficient Multioutput Gaussian Processes through Variational Inducing Kernels , 2010, AISTATS.

[22]  Kian Hsiang Low,et al.  A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data , 2015, ICML.

[23]  Sayan Mukherjee,et al.  The Information Geometry of Mirror Descent , 2013, IEEE Transactions on Information Theory.

[24]  Irina Holmes,et al.  The Gaussian Radon Transform and Machine Learning , 2013, 1310.4794.

[25]  Le Song,et al.  Scalable Bayesian Inference via Particle Mirror Descent , 2015, ArXiv.

[26]  Bernhard Schölkopf,et al.  Sparse multiscale gaussian process regression , 2008, ICML '08.

[27]  James Hensman,et al.  On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes , 2015, AISTATS.

[28]  Peter Kulchyski and , 2015 .