ACCURATE MODELING OF THE CYLINDRICAL WIRE KERNEL

Many existing numerical techniques used to analyze wire antennas assume the current distribution on the wire to be one-dimensional (1D). This assumption imposes geometric constraints on the ratio of the wire radius to the discretized antenna segment length. Moreover, many kernel approximations are so inaccurate that higher-order basis functions for wire modeling are unthinkable. More accurate kernel models are possible, but generally result in infinite series or require complicated integration rules. This work presents a new generalized approach to the modelling of cylindrical wire antennas. The method is not plagued by the aforementioned geometric restrictions and can be extended to model the higher-order behavior of wires. The numerical results show the method to be both stable and robust. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 740–744, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.21461

[1]  M. Gunn,et al.  An entire-domain Galerkin analysis of the moderately thick dipole , 1980 .

[2]  George T. Ruck,et al.  Analysis of Various Numerical Techniques Applied to Thin- Wire Scatterers , 1975 .

[3]  G. Thiele,et al.  CHAPTER 2 – Wire Antennas , 1973 .

[4]  Kin-Lu Wong,et al.  Finite‐ground‐plane effects on the ultra‐wideband planar monopole antenna , 2004 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  K. Mei On the integral equations of thin wire antennas , 1965 .

[7]  R. Mittra,et al.  Computational Methods for Electromagnetics , 1997 .

[8]  Kin-Lu Wong,et al.  Ultra‐wideband metal‐plate monopole antenna for laptop application , 2004 .

[9]  A. Ludwig Wire grid modeling of surfaces , 1987 .

[10]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[11]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[12]  Jong-Won Yu,et al.  Compact Frequency-Notched Wideband Planar Monopole Antenna with a L-Shape Ground Plane , 2005 .

[13]  E. Miller,et al.  Some computational aspects of thin-wire modeling , 1975 .

[14]  D. Wilton,et al.  Analysis of various numerical techniques applied to thin-wire scatterers , 1975 .

[15]  R. H. Duncan,et al.  CYLINDRICAL ANTENNA THEORY , 1960 .

[16]  Douglas H. Werner,et al.  A method of moments approach for the efficient and accurate modeling of moderately thick cylindrical wire antennas , 1998 .

[17]  P. L. Werner,et al.  Techniques for evaluating the uniform current vector potential at the isolated singularity of the cylindrical wire kernel , 1994 .

[18]  Xiao Dong Chen,et al.  Printed circular disc monopole antenna for ultra-wideband applications , 2004 .

[19]  Antonije R. Djordjevic,et al.  Analysis and synthesis of wire-antennas , 1982 .

[20]  R.W.P. King,et al.  The linear antenna—Eighty years of prograss , 1967 .

[21]  Tai Tsun Wu,et al.  The Thick Tubular Transmitting Antenna , 1967 .

[22]  Douglas H. Werner,et al.  An exact formulation for the vector potential of a cylindrical antenna with uniformly distributed current and arbitrary radius , 1993 .

[23]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[24]  David C. Chang,et al.  On the Electrically Thick Cylindrical Antenna , 1967 .

[25]  D.S. Weile,et al.  Electromagnetic scattering from a homogeneous material body using time domain integral equations and bandlimited extrapolation , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).