Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov

Ten actinomycete strains that form chains of spiral or looped spores were isolated from soil and dung samples in Japan. They contained D- and L-lysine, meso-diaminopimelic acid (A2pm), D-glutamic acid and D- and L-alanine in the cell-wall peptidoglycan, madurose as a characteristic whole-cell sugar, MK-9(H6) and MK-9(H8) as the major isoprenoid quinones and iso-C16:0 as the major cellular fatty acid and showed genomic DNA G+C contents of 69-74 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the isolated actinomycete strains consistently formed a monophyletic cluster with Actinomadura spadix NBRC 14099T and a separate line of descent in the phylogenetic cluster of the family Thermomonosporaceae. Actinomadura spadix NBRC 14099T also contained D- and L-lysine in addition to meso-A2pm. This genetic and phenotypic evidence revealed that the actinomycete strains could be clearly differentiated from the other members of the family Thermomonosporaceae and that they warranted separate genus status. We conclude that Actinomadura spadix should be assigned the status of the type species of a new genus as Actinoallomurus spadix gen. nov., comb. nov. (type strain NBRC 14099T=ATCC 27298T=BCRC 13386T=CBS 261.72T=CIP 105479T=DSM 43459T=JCM 3146T=KCTC 9252T=NCIMB 11118T=NRRL B-16128T). Further, we conclude that the ten new isolates should be assigned to the novel species Actinoallomurus amamiensis sp. nov. (type strain TT00-28T=NBRC 103682T=KCTC 19537T), Actinoallomurus caesius sp. nov. (type strain A3015T=NBRC 103678T=KCTC 19535T), Actinoallomurus coprocola sp. nov. (type strain TT04-09T=NBRC 103688T=KCTC 19542T), Actinoallomurus fulvus sp. nov. (type strain TT99-66T=NBRC 103680T=KCTC 19536T), Actinoallomurus iriomotensis sp. nov. (type strain TT02-47T=NBRC 103685T=KCTC 19539T), Actinoallomurus luridus sp. nov. (type strain TT02-15T=NBRC 103683T=KCTC 19538T), Actinoallomurus purpureus sp. nov. (type strain TTN02-30T=NBRC 103687T=KCTC 19541T) and Actinoallomurus yoronensis sp. nov. (type strain TTN02-22T=NBRC 103686T=KCTC 19540T).

[1]  Shukun Tang,et al.  Actinomadura alba sp. nov., isolated from soil in Yunnan, China. , 2007, International journal of systematic and evolutionary microbiology.

[2]  K. Harada,et al.  Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey's method. , 2007, Journal of microbiological methods.

[3]  K. Hatano,et al.  Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and 'Actinoplanes aurantiacus' to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. , 2001, International journal of systematic and evolutionary microbiology.

[4]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[5]  E. Stackebrandt,et al.  A new genus of the order Actinomycetales, Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov. , 1994, International journal of systematic bacteriology.

[6]  M. Hayakawa,et al.  A New Method for the Intensive Isolation of Actinomycetes from Soil , 1989 .

[7]  T. Ezaki,et al.  Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells , 1988, Journal of clinical microbiology.

[8]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[9]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[10]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[11]  H. Noller,et al.  Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.

[13]  J. Farris,et al.  Quantitative Phyletics and the Evolution of Anurans , 1969 .

[14]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[15]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[16]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[17]  M. Hayakawa,et al.  Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes , 1987 .

[18]  H. Lechevalier,et al.  Chemotaxonomy of aerobic Actinomycetes: Phospholipid composition , 1977 .

[19]  R. Gordon,et al.  Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain , 1974 .

[20]  H. Lechevalier,et al.  A critical evaluation of the genera of aerobic actinomycetes. , 1970 .