The Logistic-Uniform Distribution and Its Applications

In this article, we give a new family of univariate distributions generated by the Logistic random variable. A special case of this family is the Logistic-Uniform distribution. We show that the Logistic-Uniform distribution provides great flexibility in modeling for symmetric, negatively and positively skewed, bathtub-shaped, “J”-shaped, and reverse “J”-shaped distributions. We discuss simulation issues, estimation by the methods of moments, maximum likelihood, and the new method of minimum spacing distance estimator. We also derive Shannon entropy and asymptotic distribution of the extreme order statistics of this distribution. The new distribution can be used effectively in the analysis of survival data since the hazard function of the distribution can be “J,” bathtub, and concave-convex shaped. The usefulness of the new distribution is illustrated through two real datasets by showing that it is more flexible in analyzing the data than the Beta Generalized-Exponential, Beta-Exponential, Beta-Normal, Beta-Laplace, Beta Generalized half-Normal, β-Birnbaum-Saunders, Gamma-Uniform, Beta Generalized Pareto, Beta Modified Weibull, Beta-Pareto, Generalized Modified Weibull, Beta-Weibull, and Modified-Weibull distributions.

[1]  Gauss M. Cordeiro,et al.  The beta generalized half-normal distribution , 2010, Comput. Stat. Data Anal..

[2]  D. Vaughan,et al.  The Beta-Hyperbolic Secant (BHS) Distribution , 2016 .

[3]  Gauss M. Cordeiro,et al.  A generalized modified Weibull distribution for lifetime modeling , 2008 .

[4]  Gauss M. Cordeiro,et al.  The Beta-Half-Cauchy Distribution , 2011 .

[5]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[6]  Kanchan Jain,et al.  The Beta Generalized Weibull distribution: Properties and applications , 2012, Reliab. Eng. Syst. Saf..

[7]  D. N. Prabhakar Murthy,et al.  A modified Weibull distribution , 2003, IEEE Trans. Reliab..

[8]  Sam C. Saunders,et al.  ESTIMATION FOR A FAMILY OF LIFE DISTRIBUTIONS WITH APPLICATIONS TO FATIGUE , 1969 .

[9]  Gauss M. Cordeiro,et al.  The beta generalized Rayleigh distribution with applications to lifetime data , 2013 .

[10]  J. Hannan,et al.  Introduction to probability and mathematical statistics , 1986 .

[11]  Gauss M. Cordeiro,et al.  The beta generalized exponential distribution , 2008, 0809.1889.

[12]  The Beta Maxwell Distribution , 2010 .

[13]  M. C. Jones Families of distributions arising from distributions of order statistics , 2004 .

[14]  Gauss M. Cordeiro,et al.  The beta Laplace distribution , 2011 .

[15]  Gauss M. Cordeiro,et al.  The beta Burr XII distribution with application to lifetime data , 2011, Comput. Stat. Data Anal..

[16]  Gauss M. Cordeiro,et al.  The beta modified Weibull distribution , 2010, Lifetime data analysis.

[17]  F. Famoye,et al.  The beta-Pareto distribution , 2008 .

[18]  Hamzeh Torabi,et al.  The gamma-uniform distribution and its applications , 2012, Kybernetika.

[19]  Narayanaswamy Balakrishnan,et al.  On families of beta- and generalized gamma-generated distributions and associated inference , 2009 .

[20]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[21]  Sam C. Saunders,et al.  Estimation for a family of life distributions with applications to fatigue , 1969, Journal of Applied Probability.

[22]  Magne Vollan Aarset,et al.  How to Identify a Bathtub Hazard Rate , 1987, IEEE Transactions on Reliability.

[23]  Gauss M. Cordeiro,et al.  The beta-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling , 2011, Comput. Stat. Data Anal..

[24]  F. Famoye,et al.  BETA-NORMAL DISTRIBUTION AND ITS APPLICATIONS , 2002 .

[25]  D. Vaughan,et al.  The Beta-Hyperbolic Secant Distribution , 2010 .

[26]  S. Nadarajah,et al.  The beta Gumbel distribution , 2004 .

[27]  G. Cordeiro,et al.  The beta power distribution , 2012 .

[28]  Gauss M. Cordeiro,et al.  The beta exponentiated Weibull distribution , 2013 .

[29]  Eisa Mahmoudi,et al.  The beta generalized Pareto distribution with application to lifetime data , 2011, Math. Comput. Simul..