A fingerprint of surface-tension anisotropy in the free-energy cost of nucleation.

We focus on the Gibbs free energy ΔG for nucleating a droplet of the stable phase (e.g., solid) inside the metastable parent phase (e.g., liquid), close to the first-order transition temperature. This quantity is central to the theory of homogeneous nucleation, since it superintends the nucleation rate. We recently introduced a field theory describing the dependence of ΔG on the droplet volume V, taking into account besides the microscopic fuzziness of the droplet-parent interface, also small fluctuations around the spherical shape whose effect, assuming isotropy, was found to be a characteristic logarithmic term. Here we extend this theory, introducing the effect of anisotropy in the surface tension, and show that in the limit of strong anisotropy ΔG(V) once more develops a term logarithmic on V, now with a prefactor of opposite sign with respect to the isotropic case. Based on this result, we argue that the geometrical shape that large solid nuclei mostly prefer could be inferred from the prefactor of the logarithmic term in the droplet free energy, as determined from the optimization of its near-coexistence profile.

[1]  A. Laio,et al.  Systematic improvement of classical nucleation theory. , 2012, Physical review letters.

[2]  H. Schöpe,et al.  Heterogeneous and homogeneous crystal nucleation in colloidal hard-sphere like microgels at low metastabilities , 2011 .

[3]  G. Galli,et al.  Homogeneous ice nucleation from supercooled water. , 2011, Physical chemistry chemical physics : PCCP.

[4]  José G. Segovia-López,et al.  Effective Hamiltonian of liquid-vapor curved interfaces in mean field. , 2011, The Journal of chemical physics.

[5]  P. Vekilov,et al.  Phase transitions of folded proteins , 2010 .

[6]  K. Binder,et al.  Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study. , 2010, The Journal of chemical physics.

[7]  M. Dijkstra,et al.  Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: a comparison of simulation techniques. , 2010, The Journal of chemical physics.

[8]  G. Galli,et al.  Nucleation of tetrahedral solids: A molecular dynamics study of supercooled liquid silicon. , 2009, The Journal of chemical physics.

[9]  L. Maibaum Comment on "Elucidating the mechanism of nucleation near the gas-liquid spinodal". , 2008, Physical review letters.

[10]  D. Frenkel,et al.  Irreducible finite-size effects in the surface free energy of NaCl crystals from crystal-nucleation data. , 2008, Physical review letters.

[11]  M. Kardar Statistical physics of fields , 2007 .

[12]  M. Abate,et al.  Curve e superfici , 2006 .

[13]  D. Ceresoli,et al.  Physics of solid and liquid alkali halide surfaces near the melting point. , 2005, The Journal of chemical physics.

[14]  Albert C. Pan,et al.  Dynamics of Nucleation in the Ising Model , 2004, cond-mat/0408331.

[15]  Lev D. Gelb,et al.  Monte Carlo simulations using sampling from an approximate potential , 2003 .

[16]  H. Reiss,et al.  A molecular based derivation of the nucleation theorem , 2000 .

[17]  Dimo Kashchiev,et al.  Nucleation : basic theory with applications , 2000 .

[18]  H. Reiss,et al.  Some fundamental statistical mechanical relations concerning physical clusters of interest to nucleation theory , 1999 .

[19]  Daan Frenkel,et al.  Computer simulation study of gas–liquid nucleation in a Lennard-Jones system , 1998 .

[20]  M. Hasenbusch,et al.  Computing the roughening transition of Ising and solid-on-solid models by BCSOS model matching , 1996, cond-mat/9605019.

[21]  D. Oxtoby,et al.  NUCLEATION OF LENNARD-JONES FLUIDS : A DENSITY FUNCTIONAL APPROACH , 1996 .

[22]  Carey K. Bagdassarian,et al.  Crystal nucleation and growth from the undercooled liquid: A nonclassical piecewise parabolic free‐energy model , 1994 .

[23]  M. Napiórkowski,et al.  Structure of the effective Hamiltonian for liquid-vapor interfaces , 1993 .

[24]  M. Hasenbusch,et al.  Surface tension, surface stiffness, and surface width of the 3-dimensional Ising model on a cubic lattice , 1992, hep-lat/9211010.

[25]  A. Dillmann,et al.  A refined droplet approach to the problem of homogeneous nucleation from the vapor phase , 1991 .

[26]  K. Kelton Crystal Nucleation in Liquids and Glasses , 1991 .

[27]  Binder,et al.  Monte Carlo studies of anisotropic surface tension and interfacial roughening in the three-dimensional Ising model. , 1989, Physical review. B, Condensed matter.

[28]  Milner,et al.  Dynamical fluctuations of droplet microemulsions and vesicles. , 1987, Physical review. A, General physics.

[29]  Wang,et al.  Ginzburg-Landau theory for the solid-liquid interface of bcc elements. , 1987, Physical review. A, General physics.

[30]  M. Fisher,et al.  Curvature corrections to the surface tension of fluid drops: Landau theory and a scaling hypothesis , 1984 .

[31]  D. Oxtoby,et al.  A molecular theory of crystal nucleation from the melt , 1984 .

[32]  C. Rottman,et al.  Equilibrium crystal shapes for lattice models with nearest-and next-nearest-neighbor interactions , 1984 .

[33]  D. J. Wallace,et al.  The Ising model in a random field; supersymmetric surface fluctuations and their implications in three dimensions , 1981 .

[34]  D. J. Wallace,et al.  Goldstone modes in vacuum decay and first-order phase transitions , 1980 .

[35]  Raoul Kopelman,et al.  Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm , 1976 .

[36]  H. Müller-krumbhaar Percolation in a lattice system with particle interaction , 1974 .

[37]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[38]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[39]  G. V. Chester,et al.  Solid State Physics , 2000 .

[40]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[41]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[42]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[43]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[44]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[45]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .